
Ethereum Tests Documentation
Release 0.1

Ethereum Community

Oct 25, 2018





Contents:

1 Blockchain Tests 3
1.1 Test Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 General State Tests 7
2.1 Test Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 RLP Tests 11
3.1 Test Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Difficulty Tests 13
4.1 Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Transaction Tests 15
5.1 Test Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 VM Tests 17
6.1 Test Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Test Creation 21

8 Contribute to Docs 23

9 Indices and tables 25

i



ii



Ethereum Tests Documentation, Release 0.1

Common tests for all clients to test against. The git repo updated regulary with new tests.
This section describes basic test concepts and templates which are created by cpp-client.

Note: See Contribute to Docs if you want to help improve this documentation.

Contents: 1

https://github.com/ethereum/tests


Ethereum Tests Documentation, Release 0.1

2 Contents:



CHAPTER 1

Blockchain Tests

The blockchain tests aim is to test the basic verification of a blockchain.

Location /BlockchainTests
Supported Hardforks Byzantium | Constantinople | EIP150 | EIP158 | Frontier | Homestead
Status Actively supported

A blockchain test is based around the notion of executing a list of single blocks, described by the blocks portion of
the test. The first block is the modified genesis block as described by the genesisBlockHeader portion of the
test. A set of pre-existing accounts are detailed in the pre portion and form the world state of the genesis block.

Of special notice is the /BlockchainTests/GeneralStateTests folder within the blockchain tests folder structure, which
contains a copy of the General State Tests but executes them within the logic of the blockchain tests.

1.1 Test Implementation

It is generally expected that the test implementer will read genesisBlockHeader and pre and build the cor-
responding blockchain in the client. Then the new blocks, described by its RLP found in the rlp object of the
blocks (RLP of a complete block, not the block header only), is read. If the client concludes that the block is
valid, it should execute the block and verify the parameters given in blockHeader (block header of the new block),
transactions (transaction list) and uncleHeaders (list of uncle headers). If the client concludes that the block
is invalid, it should verify that no blockHeader, transactions or uncleHeaders object is present in the test.
The client is expected to iterate through the list of blocks and ignore invalid blocks.

1.2 Test Structure

For a formal structure definition see also the related JSON Schema in the repo.

3

https://github.com/ethereum/tests/tree/develop/BlockchainTests
https://github.com/ethereum/tests/tree/develop/BlockchainTests/GeneralStateTests
https://github.com/ethereum/tests/blob/develop/JSONSchema/bc-schema.json


Ethereum Tests Documentation, Release 0.1

{
"TESTNAME_Byzantium": {

"blocks" : [
{
"blockHeader": { ... },
"rlp": { ... },
"transactions": { ... },
"uncleHeaders": { ... }

},
{
"blockHeader": { ... },
"rlp": { ... },
"transactions": { ... },
"uncleHeaders": { ... }

},
{ ... }

],
"genesisBlockHeader": { ... },
"genesisRLP": " ... ",
"lastblockhash": " ... ",
"network": "Byzantium",
"postState": { ... },
"pre": { ... },
"sealEngine": [ "NoProof" | "Ethash" ]

},
"TESTNAME_EIP150": {

...
}
...

}

1.2.1 The Blocks Section

The blocks section is a list of block objects, which have the following format:

• rlp section contains the complete rlp of the new block as described in the yellow paper in section 4.3.3.

• blockHeader section describes the block header of the new block in the same format as described in gene-
sisBlockHeader.

• transactions section is a list of transactions which have the same format as in Transaction Tests.

• uncleHeaders section is a list of block headers which have the same format as descibed in genesisBlock-
Header.

1.2.2 The genesisBlockHeader Section

coinbase: The 160-bit address to which all fees collected from the successful mining of this block be transferred,
as returned by the COINBASE instruction.

difficulty: A scalar value corresponding to the difficulty level of this block. This can be calculated from the
previous block’s difficulty level and the timestamp, as returned by the DIFFICULTY instruction.

gasLimit: A scalar value equal to the current limit of gas expenditure per block, as returned by the GASLIMIT
instruction.

number: A scalar value equal to the number of ancestor blocks. The genesis block has a number of zero.

4 Chapter 1. Blockchain Tests



Ethereum Tests Documentation, Release 0.1

timestamp: A scalar value equal to the reasonable output of Unix’s time() at this block’s inception, as returned by
the TIMESTAMP instruction.

parentHash: The Keccak 256-bit hash of the parent block’s header, in its entirety

bloom: The Bloom filter composed from indexable information (logger address and log topics) contained in each
log entry from the receipt of each transaction in the transactions list.

extraData: An arbitrary byte array containing data relevant to this block. This must be 1024 bytes or fewer.

gasUsed: A scalar value equal to the total gas used in transactions in this block.

nonce: A 256-bit hash which proves that a sufficient amount of computation has been carried out on this block.

receiptTrie: The Keccak 256-bit hash of the root node of the trie structure populated with the receipts of each
transaction in the transactions list portion of the block.

stateRoot: The Keccak 256-bit hash of the root node of the state trie, after all transactions are executed and
finalisations applied.

transactionsTrie: The Keccak 256-bit hash of the root node of the trie structure populated with each transaction
in the transactions list portion of the block.

uncleHash: The Keccak 256-bit hash of the uncles list portion of this block

1.2.3 Pre and postState Sections

• pre section: as described in General State Tests.

• postState section: as described in General State Tests (section - post).

1.2.4 Seal Engine

The sealEngine parameter (values: NoProof | Ethash) defines the seal engine the test is generated with. For
tests with a value NoProof you can skip block validation which will speed up test execution. Note that this also
means that you cannot rely on PoW specific block header values (mixHash, nonce) for tests labelled this way.

Currently this field is optional and there are still tests with no sealEngine parameter with the default here being the
NoProof setting. So make sure to first check on parameter existence in your implementation.

1.2.5 Optional BlockHeader Information

"blocknumber" = "int" is section which defines what is the order of this block. It is used to define a situation
when you have 3 blocks already imported but then it comes new version of the block 2 and 3 and thus you might have
new best blockchain with blocks 1 2’ 3’ instead previous. If blocknumber is undefined then it is assumed that blocks
are imported one by one. When running test, this field could be used for information purpose only.

"chainname" = "string" This is used for defining forks in the same test. You could mine blocks to chain “A”:
1, 2, 3 then to chain “B”: 1, 2, 3, 4 (chainB becomes primary). Then again to chain “A”: 4, 5, 6 (chainA becomes
primary) and so on. chainname could also be defined in uncle header section. If defined in uncle header it tells on
which chain’s block uncle header would be populated from. When running test, this field could be used for information
purpose only.

"chainnetwork" = "string" Defines on which network rules this block was mined. (see the difference
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki). When running test, this field could be used
for information purpose only.

1.2. Test Structure 5

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki


Ethereum Tests Documentation, Release 0.1

6 Chapter 1. Blockchain Tests



CHAPTER 2

General State Tests

The state tests aim is to test the basic workings of the state in isolation.

Location /GeneralStateTests
Supported Hardforks Byzantium | Constantinople | EIP150 | EIP158 | Frontier | Homestead
Status Actively supported

A state test is based around the notion of executing a single transaction, described by the transaction portion of
the test. The overarching environment in which it is executed is described by the env portion of the test and includes
attributes of the current and previous blocks. A set of pre-existing accounts are detailed in the pre portion and form
the world state prior to execution. Similarly, a set of accounts are detailed in the post portion to specify the end
world state. Since the data of the blockchain is not given, the opcode BLOCKHASH could not return the hashes of the
corresponding blocks. Therefore we define the hash of block number n to be SHA256("n").

The log entries (logs) as well as any output returned from the code (output) is also detailed.

2.1 Test Implementation

It is generally expected that the test implementer will read env, transaction and pre then check their results
against logs, out, and post.

Note: The structure of state tests was reworked lately, see the associated discussion here.

2.2 Test Structure

{
"testname" : {

(continues on next page)

7

https://github.com/ethereum/tests/tree/develop/GeneralStateTests
https://github.com/ethereum/EIPs/issues/176


Ethereum Tests Documentation, Release 0.1

(continued from previous page)

"env" : {
"currentCoinbase" : "address",
"currentDifficulty" : "0x020000", //minimum difficulty for mining on blockchain
"currentGasLimit" : "u64", //not larger then maxGasLimit = 0x7fffffffffffffff
"currentNumber" : "0x01", //Irrelevant to hardfork parameters!
"currentTimestamp" : "1000", //for blockchain version
"previousHash" : "h256"

},
"post" : {

"EIP150" : [
{
"hash" : "3e6dacc1575c6a8c76422255eca03529bbf4c0dda75dfc110b22d6dc4152396f",
"indexes" : { "data" : 0, "gas" : 0, "value" : 0 }

},
{
"hash" : "99a450d8ce5b987a71346d8a0a1203711f770745c7ef326912e46761f14cd764",
"indexes" : { "data" : 0, "gas" : 0, "value" : 1 }

},
...

],
"EIP158" : [

{
"hash" : "3e6dacc1575c6a8c76422255eca03529bbf4c0dda75dfc110b22d6dc4152396f",
"indexes" : { "data" : 0, "gas" : 0, "value" : 0 }

},
{
"hash" : "99a450d8ce5b987a71346d8a0a1203711f770745c7ef326912e46761f14cd764",
"indexes" : { "data" : 0, "gas" : 0, "value" : 1 }

},
...

],
"Frontier" : [

...
],
"Homestead" : [

...
]

},
"pre" : {

//same as for StateTests
},
"transaction" : {

"data" : [ "" ],
"gasLimit" : [ "285000", "100000", "6000" ],
"gasPrice" : "0x01",
"nonce" : "0x00",
"secretKey" : "45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8

→˓",
"to" : "095e7baea6a6c7c4c2dfeb977efac326af552d87",

"value" : [ "10", "0" ]
}

}
}

8 Chapter 2. General State Tests



Ethereum Tests Documentation, Release 0.1

2.2.1 The env Section

currentCoinbase

The current block’s coinbase address, to be returned by the COINBASE instruction.
currentDifficulty

The current block’s difficulty, to be returned by the DIFFICULTY instruction.
currentGasLimit

The current block’s gas limit.
currentNumber

The current block’s number. Also indicates network rules for the transaction. Since blocknumber = 1000000
Homestead rules are applied to transaction. (see
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki)

currentTimestamp

The current block’s timestamp.
previousHash

The previous block’s hash.

2.2.2 The transaction Section

data

The input data passed to the execution, as used by the CALLDATA. . . instructions. Given as an array of byte
values. See $DATA_ARRAY.

gasLimit

The total amount of gas available for the execution, as would be returned by the GAS instruction were it be
executed first.

gasPrice

The price of gas for the transaction, as used by the GASPRICE instruction.
nonce

Scalar value equal to the number of transactions sent by the sender.
address

The address of the account under which the code is executing, to be returned by the ADDRESS instruction.
secretKey

The secret key as can be derived by the v,r,s values if the transaction.
to

The address of the transaction’s recipient, to be returned by the ORIGIN instruction.
value

The value of the transaction (or the endowment of the create), to be returned by the CALLVALUE‘ instruction
(if executed first, before any CALL).

2.2.3 The post Section

Indexes section describes which values from given array to set for transaction before it’s execution on a pre state.
Transaction now has data, value, and gasLimit as arrays. post section now has array of implemented forks. For each
fork it has another array of execution results on that fork rules with post state root hash and transaction parameters.

2.2. Test Structure 9

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki


Ethereum Tests Documentation, Release 0.1

2.2.4 The pre Section

The pre section have the format of a mapping between addresses and accounts. Each account has the format:

balance

The balance of the account.
nonce

The nonce of the account.
code

The body code of the account, given as an array of byte values. See $DATA_ARRAY.
storage

The account’s storage, given as a mapping of keys to values. For key used notion of string as digital or hex
number e.g: "1200" or "0x04B0" For values used $DATA_ARRAY.

10 Chapter 2. General State Tests



CHAPTER 3

RLP Tests

Describes an RLP (https://github.com/ethereum/wiki/wiki/RLP) encoding using the .json file.

Location /RLPTests
Supported Hardforks Hardfork-independent
Status Actively supported

3.1 Test Implementation

The client should read the rlp byte stream, decode and check whether the contents match its json representation. Then
it should try do it reverse - encode json rlp representation into rlp byte stream and check whether it matches the given
rlp byte stream.

If it is an invalid RLP byte stream in the test, then ‘in’ field would contain string INVALID.

Some RLP byte streams are expected to be generated by fuzz test suite. For those examples ‘in’ field would contain
string VALID as it means that rlp should be easily decoded.

Note that RLP tests are testing a single RLP object encoding and not a stream of RLP objects in one array.

3.2 Test Structure

{
"rlpTest": {

"in": "dog",
"out": "83646f67"

},

"multilist": {
"in": [ "zw", [ 4 ], 1 ],

(continues on next page)

11

https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/tests/tree/develop/RLPTests


Ethereum Tests Documentation, Release 0.1

(continued from previous page)

"out": "c6827a77c10401"
},

"validRLP": {
"in": "VALID",
"out": "c7c0c1c0c3c0c1c0"

},

"invalidRLP": {
"in": "INVALID",
"out": "bf0f000000000000021111"

},
...

}

3.2.1 Sections

• in - json object (array, int, string) representation of the rlp byte stream (*except values VALID and INVALID)

• out - string of rlp bytes stream

12 Chapter 3. RLP Tests



CHAPTER 4

Difficulty Tests

These tests are designed to just check the difficulty formula of a block.

Location BasicTests (difficulty*.json)
Supported Hardforks Test Networks | Frontier | Homestead
Status Outdated

difficulty = DIFFICULTY(currentBlockNumber, currentTimestamp, parentTimestamp, parentDifficulty)

described at EIP2 point 4 with homestead changes.

So basically this .json tests are just to check how this function is calculated on different function parameters (parent-
Difficulty, currentNumber) in its extremum points.

There are several test files:

difficulty.json Normal Frontier/Homestead chain difficulty tests defined manually

difficultyFrontier.json Same as above, but auto-generated tests

difficultyMorden.json Tests for testnetwork difficulty. (it has different homestead transition block)

difficultyOlimpic.json Olympic network. (no homestead)

difficultyHomestead.json Tests for homestead difficulty (regardless of the block number)

difficultyCustomHomestead.json Tests for homestead difficulty (regardless of the block number)

4.1 Test Structure

{
"difficultyTest" : {

"parentTimestamp" : "42",
"parentDifficulty" : "1000000",
"currentTimestamp" : "43",

(continues on next page)

13

https://github.com/ethereum/tests/tree/develop/BasicTests
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki


Ethereum Tests Documentation, Release 0.1

(continued from previous page)

"currentBlockNumber" : "42",
"currentDifficulty" : "1000488"

}
}

4.1.1 Sections

• parentTimestamp - indicates the timestamp of a previous block

• parentDifficulty - indicates the difficulty of a previous block

• currentTimestamp - indicates the timestamp of a current block

• currentBlockNumber - indicates the number of a current block (previous block number = currentBlock-
Number - 1)

• currentDifficulty - indicates the difficulty of a current block

14 Chapter 4. Difficulty Tests



CHAPTER 5

Transaction Tests

Describes a complete transaction and its RLP representation using the .json file.

Location /TransactionTests
Supported Hardforks Constantinople | EIP158 | Frontier | Homestead
Status Actively supported

5.1 Test Implementation

The client should read the rlp and check whether the transaction is valid, has the correct sender and corresponds to the
transaction parameters. If it is an invalid transaction, the transaction and the sender object will be missing.

5.2 Test Structure

{
"transactionTest1": {

"rlp" : "bytearray",
"sender" : "address",
"blocknumber" : "1000000"
"transaction" : {

"nonce" : "int",
"gasPrice" : "int",
"gasLimit" : "int",
"to" : "address",
"value" : "int",
"v" : "byte",
"r" : "256 bit unsigned int",
"s" : "256 bit unsigned int",
"data" : "byte array"

}
(continues on next page)

15

https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/tests/tree/develop/TransactionTests


Ethereum Tests Documentation, Release 0.1

(continued from previous page)

},

"invalidTransactionTest": {
"rlp" : "bytearray",

},
...

}

5.2.1 Sections

• rlp - RLP encoded data of this transaction

• transaction - transaction described by fields

• nonce - A scalar value equal to the number of transactions sent by the sender.

• gasPrice - A scalar value equal to the number of wei to be paid per unit of gas.

• gasLimit - A scalar value equal to the maximum amount of gas that should be used in executing this transac-
tion.

• to - The 160-bit address of the message call’s recipient or empty for a contract creation transaction.

• value - A scalar value equal to the number of wei to be transferred to the message call’s recipient or, in the
case of contract creation, as an endowment to the newly created account.

• v, r, s - Values corresponding to the signature of the transaction and used to determine the sender of the
transaction.

• sender - the address of the sender, derived from the v,r,s values.

• blocknumber - indicates network rules for the transaction. Since blocknumber = 1000000 Homestead rules
are applied to transaction. (see https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki)

16 Chapter 5. Transaction Tests

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.mediawiki


CHAPTER 6

VM Tests

The VM tests aim is to test the basic workings of the VM in isolation.

Location /VMTests
Supported Hardforks Currently only Homestead
Status Actively supported

This is specifically not meant to cover transaction, creation or call processing, or management of the state trie. Indeed
at least one implementation tests the VM without calling into any Trie code at all.

A VM test is based around the notion of executing a single piece of code as part of a transaction, described by the
exec portion of the test. The overarching environment in which it is executed is described by the env portion of the
test and includes attributes of the current and previous blocks. A set of pre-existing accounts are detailed in the pre
portion and form the world state prior to execution. Similarly, a set of accounts are detailed in the post portion to
specify the end world state.

The gas remaining (gas), the log entries (logs) as well as any output returned from the code (out) is also detailed.

6.1 Test Implementation

It is generally expected that the test implementer will read env, exec and pre then check their results against gas,
logs, out, post and callcreates. If an exception is expected, then latter sections are absent in the test. Since
the reverting of the state is not part of the VM tests.

Because the data of the blockchain is not given, the opcode BLOCKHASH could not return the hashes of the corre-
sponding blocks. Therefore we define the hash of block number n to be SHA3-256(“n”).

Since these tests are meant only as a basic test of VM operation, the CALL and CREATE instructions are not ac-
tually executed. To provide the possibility of testing to guarantee they were actually run at all, a separate portion
callcreates details each CALL or CREATE operation in the order they would have been executed. Furthermore,
gas required is simply that of the VM execution: the gas cost for transaction processing is excluded.

17

https://github.com/ethereum/tests/tree/develop/VMTests


Ethereum Tests Documentation, Release 0.1

6.2 Test Structure

{
"test name 1": {

"env": { ... },
"pre": { ... },
"exec": { ... },
"gas": { ... },
"logs": { ... },
"out": { ... },
"post": { ... },
"callcreates": { ... }

},
"test name 2": {

"env": { ... },
"pre": { ... },
"exec": { ... },
"gas": { ... },
"logs": { ... },
"out": { ... },
"post": { ... },
"callcreates": { ... }

},
...

}

6.2.1 The env Section

• currentCoinbase: The current block’s coinbase address, to be returned by the COINBASE instruction.

• currentDifficulty: The current block’s difficulty, to be returned by the DIFFICULTY instruction.

• currentGasLimit: The current block’s gas limit.

• currentNumber: The current block’s number.

• currentTimestamp: The current block’s timestamp.

• previousHash: The previous block’s hash.

6.2.2 The exec Section

• address: The address of the account under which the code is executing, to be returned by the ADDRESS
instruction.

• origin: The address of the execution’s origin, to be returned by the ORIGIN instruction.

• caller: The address of the execution’s caller, to be returned by the CALLER instruction.

• value: The value of the call (or the endowment of the create), to be returned by the CALLVALUE instruction.

• data: The input data passed to the execution, as used by the CALLDATA. . . instructions. Given as an array of
byte values. See $DATA_ARRAY.

• code: The actual code that should be executed on the VM (not the one stored in the state(address)) . See
$DATA_ARRAY.

• gasPrice: The price of gas for the transaction, as used by the GASPRICE instruction.

18 Chapter 6. VM Tests



Ethereum Tests Documentation, Release 0.1

• gas: The total amount of gas available for the execution, as would be returned by the GAS instruction were it
be executed first.

6.2.3 The pre and post Section

The pre and post sections each have the same format of a mapping between addresses and accounts. Each account
has the format:

• balance: The balance of the account.

• nonce: The nonce of the account.

• code: The body code of the account, given as an array of byte values. See $DATA_ARRAY.

• storage: The account’s storage, given as a mapping of keys to values. For key used notion of string as digital
or hex number e.g: "1200" or "0x04B0" For values used $DATA_ARRAY.

6.2.4 The callcreates Section

The callcreates section details each CALL or CREATE instruction that has been executed. It is an array of maps
with keys:

• data: An array of bytes specifying the data with which the CALL or CREATE operation was made. In the case
of CREATE, this would be the (initialisation) code. See $DATA_ARRAY.

• destination: The receipt address to which the CALL was made, or the null address ("0000...") if the
corresponding operation was CREATE.

• gasLimit: The amount of gas with which the operation was made.

• value: The value or endowment with which the operation was made.

6.2.5 The logs Section

The logs sections contains the hex encoded hash of the rlp encoded log entries, reducing the overall size of the test
files while still verifying that all of the data is accurate (at the cost of being able to read what the data should be). Each
logentry has the format:

keccak(rlp.encode(log_entries))

(see https://github.com/ethereum/py-evm/blob/7a96fa3a2b00af9bea189444d88a3cce6a6be05f/eth/tools/_utils/
hashing.py#L8-L16)

6.2.6 The gas and output Keys

Finally, there are two simple keys, gas and out:

• gas: The amount of gas remaining after execution.

• out: The data, given as an array of bytes, returned from the execution (using the RETURN instruction). See
$DATA_ARRAY.

$DATA_ARRAY - type that intended to contain raw byte data and for convenient of the users is pop-
ulated with three types of numbers, all of them should be converted and concatenated to a byte array
for VM execution.

• The types are: 1. number - (unsigned 64bit) 2. “longnumber” - (any long number) 3. “0xhex_num” - (hex
format number)

6.2. Test Structure 19

https://github.com/ethereum/py-evm/blob/7a96fa3a2b00af9bea189444d88a3cce6a6be05f/eth/tools/_utils/hashing.py#L8-L16
https://github.com/ethereum/py-evm/blob/7a96fa3a2b00af9bea189444d88a3cce6a6be05f/eth/tools/_utils/hashing.py#L8-L16


Ethereum Tests Documentation, Release 0.1

e.g: ````[1, 2, 10000, "0xabc345dFF", "199999999999999999999999999999999999999"]````

20 Chapter 6. VM Tests



CHAPTER 7

Test Creation

Instructions on how to create tests and how to use the cpp-client testeth tool can be found in the c++ documentation
test generation chapter.

Since docker images pointed to in the test generation docs are often outdated, you will probably have to rely on your
own source build of the Aleth C++ Ethereum client for generating tests (start this early on since this is taking some
time).

21

https://github.com/ethereum/aleth/blob/master/doc/generating_tests.rst
https://github.com/ethereum/aleth/#building-from-source


Ethereum Tests Documentation, Release 0.1

22 Chapter 7. Test Creation



CHAPTER 8

Contribute to Docs

This documentation has been build using the Python Sphinx documentation tool.

Since the Ethereum tests repository is very large to clone locally, a convenient way to contribute to the documentation
is to make a fork of the test repo, add the changes online with the GitHub reStructuredText editor and then open a PR.

If you want to clone to your desk you might want to make use of git clone --depth 1 for faster download.

You can build the documentation by running make html from the docs directory in the tests repository.

23

http://www.sphinx-doc.org/
https://github.com/ethereum/tests
http://www.sphinx-doc.org/en/stable/rest.html


Ethereum Tests Documentation, Release 0.1

24 Chapter 8. Contribute to Docs



CHAPTER 9

Indices and tables

• genindex

• modindex

• search

25


	Blockchain Tests
	Test Implementation
	Test Structure

	General State Tests
	Test Implementation
	Test Structure

	RLP Tests
	Test Implementation
	Test Structure

	Difficulty Tests
	Test Structure

	Transaction Tests
	Test Implementation
	Test Structure

	VM Tests
	Test Implementation
	Test Structure

	Test Creation
	Contribute to Docs
	Indices and tables

