

Ethereum Tests

Common tests for all clients to test against. The git repo [https://github.com/ethereum/tests] updated regulary with new tests.

This section describes basic test concepts and templates which are created by cpp-client.

Note

See Contribute to Docs if you want to help improve this documentation.

 Retesteth

Retesteth

Ori Pomerantz

Note

This document is a tutorial. For reference on the
retesteth options, look
here [https://ethereum-tests.readthedocs.io/en/latest/retesteth-ref.html].

 State Transition Tests

State Transition Tests

Ori Pomerantz

In this tutorial you learn how to write and execute Ethereum state transition
tests. These tests can be very simple, for example testing a single evm assembler
opcode, so this is a good place to get started. This tutorial is not
intended as a comprehensive reference, look in the table of content on the left.

The Environment

Before you start, make sure you read and understand the Retesteth Tutorial, and create the docker environment explained there.

Compiling Your First Test

Before we get into how tests are built, lets compile and run a simple one.

	The source code of the tests is in tests/src. It is complicated to
add another tests directory, so we will use
GeneralStateTestsFiller/stExample.

cd ~/tests/src/GeneralStateTestsFiller/stExample
cp ~/tests/docs/tutorial_samples/01* .
cd ~

	The source code of tests doesn’t include all the information required
for the test. Instead, you run retesteth.sh,
and it runs a client with the Ethereum Virtual Machine (evm) to fill in the
values. This creates a compiled
version in tests/GeneralStateTests/stExample.

./dretesteth.sh -t GeneralStateTests/stExample -- \
 --singletest 01_add22 --testpath ~/tests \
 --datadir /tests/config --filltests
sudo chown $USER tests/GeneralStateTests/stExample/*

	Run the test normally, with verbose output:

./dretesteth.sh -t GeneralStateTests/stExample -- \
 --singletest 01_add22 --testpath ~/tests \
 --datadir /tests/config --clients geth --verbosity 5

The Source Code

Now that we’ve seen that the test works, let’s go through it line by line.
This test specification is written in YAML, if you are not familiar
with this format click here [https://www.tutorialspoint.com/yaml/index.htm].

All the fields are defined under the name of the test. Note that YAML comments
start with a hash (#) and continue to the end of the line.

If you want to follow along with the full source code
You can see the complete code, here [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/01_add22Filler.yml]

The name of the test
01_add22:

This is the general Ethereum environment before the transaction:

env:
 currentCoinbase: 2adc25665018aa1fe0e6bc666dac8fc2697ff9ba
 currentDifficulty: '0x20000'
 currentGasLimit: 10_000_000

You can put underscores (_) in numbers to make them more readable.

currentNumber: 1
currentTimestamp: "1000"
previousHash: 5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6

This is where you put human readable information. In contrast to # comments,
these comment fields get copied to the compiled JSON file for the test.

_info:
 comment: "You can put a comment here"

These are the relevant addresses and their initial states before the test starts:

pre:

This is a contract address. As such it has code, which can be in one of three languages:

	Ethereum virtual machine (EVM) machine language

	Lisp Like Language (lll) [http://blog.syrinx.net/the-resurrection-of-lll-part-1/].
One
advantage of lll is that it lets us use Ethereum Assembler almost directly [https://lll-docs.readthedocs.io/en/latest/lll_reference.html#evm-opcodes].

	Solidity [https://cryptozombies.io/], which is the standard language for
Ethereum contracts. Solidity is well known, but it is not ideal for VM tests
because it adds its own code to compiled contracts. Click here for a test
written in Solidity [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/03_solidityFiller.yml].

	The Yul language [https://docs.soliditylang.org/en/v0.8.6/yul.html], which is
a low level language for the EVM. Click here for a test written in Yul [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/09_yulFiller.yml].

095e7baea6a6c7c4c2dfeb977efac326af552d87:
 balance: '0x0ba1a9ce0ba1a9ce'

LLL code can be very low level. In this case, (ADD 2 2) is translated
into three opcodes:

	PUSH 2

	PUSH 2

	ADD (which pops the last two values in the stack, adds them,
and pushes the sum into the stack).

This expression [[0]] is short hand for (SSTORE 0 <the value at the top of the
stack>). It stores the value (in this case, four) in location 0.

code: |
 {
 ; Add 2+2
 [[0]] (ADD 2 2)
 }
 nonce: '0'

Every address in Ethereum has associated storage,
which is essentially a lookup table. You can read more about it here [https://applicature.com/blog/blockchain-technology/ethereum-smart-contract-storage].
In this case the storage is initially empty.

storage: {}

This is a “user” address. As such, it does not have code. Note that you still
have to specify the storage.

a94f5374fce5edbc8e2a8697c15331677e6ebf0b:
 balance: '0x0ba1a9ce0ba1a9ce'
 code: '0x'
 nonce: '0'
 storage: {}

This is the transaction that will be executed to check the code.
There are several scalar fields here:

	gasPrice is the price of gas in Wei. Note that starting with the London fork [https://blog.ethereum.org/2021/07/15/london-mainnet-announcement/] the block base
fee is ten by default, and a lower gasPrice will get rejected.

	nonce has to be the same value as the user address

	to is the contract we are testing. If you want to create a contract, keep the
to definition, but leave it empty.

Additionally, these are several fields that are lists of values. The reason to
have lists instead of a single value is to be able to run multiple similar
tests from the same file (see the Multitest Files section below).

	data is the data we send

	gasLimit is the gas limit

	value is the amount of Wei we send with the transaction

transaction:
 data:
 - '0x10'
 gasLimit:
 - '80000000'
 gasPrice: 1000
 nonce: '0'
 to: 095e7baea6a6c7c4c2dfeb977efac326af552d87
 value:
 - '1'

This is the state we expect after running the transaction on the pre state.
The indexes: subsection is used for multitest files, for now just copy and
paste it into your tests.

expect:
 - indexes:
 data: !!int -1
 gas: !!int -1
 value: !!int -1
 network:
 - '>=London'

We expect the contract’s storage to have the result, in this case 4.

result:
 095e7baea6a6c7c4c2dfeb977efac326af552d87:
 storage:
 0x00: 0x04

Failing a Test

To verify that retesteth really does run tests, lets fail one.
The **02_fail** [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/02_failFiller.yml]
test is almost identical to 01_add22, except that it expects
to see that 2+2=5. Here are the steps to use it.

	Copy the test to the stExample directory:

cp ~/tests/docs/tutorial_samples/02* ~/tests/src/GeneralStateTestsFiller/stExample

	Fill the information and run the test:

./dretesteth.sh -t GeneralStateTests/stExample -- \
 --singletest 02_fail --testpath ~/tests \
 --datadir /tests/config --filltests

	Delete the test so we won’t see the failure when we run future tests
(you can run all the tests in a directory by omitting the
--singletest parameter:

rm ~/tests/src/GeneralStateTestsFiller/stExample/02_*

Tests that are Supposed to Fail

When a test transaction is supposed to fail, you add an expectException:
section to the result. You can see a complete example in 10_expectExceptionFiller [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/10_expectExceptionFiller.yml]

expect:
- indexes:
 data: !!int -1
 gas: !!int -1
 value: !!int -1
 network:
 - '>=London'
 expectException:
 '>=London': TR_FeeCapLessThanBlocks
 result: {} # No point checking the result when no transaction happened

You can see the complete list of supported exceptions either in the config file for the
client, or in the retesteth source code [https://github.com/ethereum/retesteth/blob/develop/retesteth/configs/clientconfigs/t8ntool.cpp#L158-L166].

Note that running out of gas is not an exception. Technically speaking a transaction that
runs out of gas is successful, it is just reverted.

Yul Tests

Yul [https://docs.soliditylang.org/en/v0.8.6/yul.html] is a language that is very
close to EVM assembler. As such it is a good language for writing tests. You can see
a Yul test at tests/docs/tutorial_samples/09_yulFiller.yml [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/09_yulFiller.yml].

This is a sample contract:

cc:
 balance: '0x0ba1a9ce0ba1a9ce'
 code: |
 :yul {
 let cellAddr := sub(10,10)

 sstore(cellAddr,add(60,9))
 }
 nonce: 1
 storage: {}

It is very similar to an LLL test, except for having the :yul keyword before the
opening curly bracket ({).

Note that you can specify the fork [https://ethereum.org/en/history/]
for which you compile the code.
This is important because of
the PUSH0 opcode [https://www.evm.codes/#5f?fork=shanghai],
which cannot be used in tests that need to run on forks prior to Shanghai.

code: |
 :yul <fork, such as berlin or shanghai>
 {
 <code goes here>
 }

Solidity Tests

You can see a solidity test at tests/docs/tutorial_samples/03_solidityFiller.yml [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/03_solidityFiller.yml].
Here are the sections that are new.

Note

The Solidity compiler adds a lot of extra code that handles ABI encoding,
ABI decoding, contract constructors, etc. This makes tracing and debugging a lot
harder, which makes Solidity a bad choice for most Ethereum client tests.

This feature is available for tests where it is useful, but LLL or Yul is
usually a better choice.

 Blockchain Tests

Blockchain Tests

Ori Pomerantz

In this tutorial you learn how to use the skills you learned writing state tests to write
blockchain tests. These tests can include multiple blocks and each of those blocks can include
multiple transactions.

The Environment

Before you start, make sure you create the retesteth tutorial and create the
environment explained there. Also make sure you read and understand the state
transition tests tutorial.

Types of Blockchain Tests

If you go to tests/src/BlockchainTestsFiller you will see three different directories.

	ValidBlocks are tests that only have valid blocks, which the client should accept.

	InvalidBlocks are tests that should raise an exception because they
include invalid blocks.

	TransitionTests are tests that verify the transitions between different
versions of the Ethereum protocol (called forks [https://medium.com/mycrypto/the-history-of-ethereum-hard-forks-6a6dae76d56f])
are handled correctly.

Valid Block Tests

There is a valid block test in tests/docs/tutorial_samples/05_simpleTxFiller.yml [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/05_simpleTxFiller.yml].
We copy it to bcExample.

mkdir ~/tests/src/Blo*/Val*/bcExample*
cp ~/tests/docs/tu*/05_* ~/tests/src/Blo*/Val*/bcExample*
cd ~
./dretesteth.sh -t BlockchainTests/ValidBlocks/bcExample -- \
 --testpath ~/tests --datadir /tests/config --filltests \
 --singletest 05_simpleTx

Test Source Code

This section explains 05_simpleTxFiller.yml. I am only going to document
the things in which it is different from state transition tests.

State transition tests take their
genesis block [https://arvanaghi.com/blog/explaining-the-genesis-block-in-ethereum/]
from the client configuration (or, failing that, from the default client configuration)
in retesteth. In blockchain tests the values may be relevant to the test, so
you specify them directly.

genesisBlockHeader:
 bloom: '0x00'
 coinbase: '0x8888f1f195afa192cfee860698584c030f4c9db1'
 difficulty: '131072'
 extraData: '0x42'
 gasLimit: '3141592'
 gasUsed: '0'
 mixHash: '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'
 nonce: '0x0102030405060708'
 number: '0'
 parentHash: '0x00'
 receiptTrie: '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'
 stateRoot: '0xf99eb1626cfa6db435c0836235942d7ccaa935f1ae247d3f1c21e495685f903a'
 timestamp: '0x54c98c81'
 transactionsTrie: '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'
 uncleHash: '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'

In a lot of existing tests you will see a definition for sealEngine. This is
related to getting a proof of work as part of the test. However, this is no longer
part of retesteth, so you can omit it or set it to NoProof.

sealEngine: NoProof

Instead of a single transaction, we have a list of blocks. In a YAML list you
tell different items apart by the dash character (-). The block list has two items in it.

blocks:

The first block has one field, transactions, a list of transactions.
Every individual transaction is specified with the same fields used in
state transition tests. This block only has one transaction, which transfers
10 Wei.

- transactions:
 - data: ''
 gasLimit: '50000'
 gasPrice: 20

This is the nonce value for the transaction. The first value is the
nonce associated with the address in the pre: section.
Each subsequent transaction from the same address increments the nonce.

Alternatively, if you use auto for every transaction of an account,
the retesteth tool will provide the nonce values automatically.

nonce: '0'
secretKey: 45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8
to: 0xde570000de570000de570000de570000de570000
value: '10'

This is the second block. In contrast to the first block, in this one we specify
a blockHeader and override some of the default values.

- blockHeader:
 gasLimit: '3141592'

A block can also contain references to uncle blocks (blocks mined at the same
time) [https://www.investopedia.com/terms/u/uncle-block-cryptocurrency.asp].
Note that writing tests with uncle headers is complicated, because you need
to run the test once to get the correct hash value. Only then can you put the
correct value in the test and run it again so it’ll be successful.

uncleHeaders: []

This block has two transactions.

transactions:
- data: ''
 gasLimit: '50000'
 gasPrice: '20'

This is another transaction from the same address, so the nonce is one more
than it was in the previous one.

 nonce: '1'
 secretKey: 45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8
 to: 0xde570000de570000de570000de570000de570000
 value: '20'
- data: ''
 gasLimit: '50000'
 gasPrice: '30'

This transaction comes from a different address (addresses are uniquely derived
from the private key, and this one is different from the one in the previous
transaction). This transaction’s nonce value is the initial value for
that address, zero.

nonce: '0'
secretKey: 41f6e321b31e72173f8ff2e292359e1862f24fba42fe6f97efaf641980eff298
to: 0xde570000de570000de570000de570000de570000
value: '30'

Tests using the blockchain random value

Once Ethereum moves to proof of stake (PoS), there will no longer be any need for the block header
fields difficulty and mixHash.
When the block header comes from a consensus client, the mixHash is a mostly random value that is
produced by the beacon chain (the validators can each affect a bit on it, so it’s not exactly random).
The DIFFICULTY opcode is no longer relevant either, so it is replaced by an opcode with the same
value (0x44) called PREVRANDAO.
You can read more about this topic in EIP-4399 [https://eips.ethereum.org/EIPS/eip-4399].

In block tests we can simulate this value by specifying a mixHash as part of blockHeader.
However, the interaction of mixHash and stateRoot makes this process a bit complicated.

First, you write the test normally, using the block header field mixHash for the random value
that in real execution would come from the consensus layer.
Note that mixHash has to be a 32 byte value.
Even if most of the bytes are zeros, you have to specify them.

When you run the test, it fails on the first block where the state is a function of the random value with an error that includes these lines:

/retesteth/retesteth/TestOutputHelper.cpp(227): error: in "BlockchainTests/ValidBlocks/bcStateTests":
Error: Postmine block tweak expected no exception! Client errors with: 'Error importing raw rlp block: Block from pending block != t8ntool constructed block!
Error in field: stateRoot
 .
 .
 .
parentHash 0x76898c312aea29aa17df32e97399ccdf88e72c544305c9ddc3e76996e35ab951 vs 0x76898c312aea29aa17df32e97399ccdf88e72c544305c9ddc3e76996e35ab951
receiptTrie 0x71043553dd2c4fbc22100a69d47ba3a790f7e428796792c552362b81e6cf5331 vs 0x71043553dd2c4fbc22100a69d47ba3a790f7e428796792c552362b81e6cf5331
stateRoot 0x7a3760ed3aa3e40711b3ecd1cb898a9f37c14cbde7f95b7c5c7af05e6d794864 vs 0x1b5647d3ca49c4b0e9e57e113f85b1be28ac10f0577b6e70c76fb7d767949bf8

In the error there are two separate values of stateRoot.
The first, shown in red, is the expected value.
The second, shown in yellow, is the actual value.
You need to copy that second value into the block header.

- blockHeader:
 mixHash: 0x0102030405060708091011121314151617181920212223242526272829303131
 stateRoot: 0x1b5647d3ca49c4b0e9e57e113f85b1be28ac10f0577b6e70c76fb7d767949bf8

If you use the random value also in another block, you repeat the process, once per block.

You can see an example of this type of test here [https://github.com/ethereum/tests/blob/develop/src/BlockchainTestsFiller/ValidBlocks/bcStateTests/randomFiller.yml].

Why is this procedure necessary?

Retesteth was written back during the proof of work (PoW) days, when mixHash was a function of the
nonce, which itself was produced from the completed block (including the post-block stateRoot).
The way that it fills the block header is to first get the block processed by the client, read the
resulting stateRoot (as well as some other fields).
Then it reverts out of the block and sends it again, this time with the blockHeader fields and the
calculated fields from the client.

This algorithm fails when the state, and therefore stateRoot, is affected by block header fields.

Invalid Block Tests

The invalid block test is in tests/docs/tutorial_samples/06_invalidBlockFiller.yml [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/06_invalidBlockFiller.yml]
We copy it to bcExample.

mkdir ~/tests/src/BlockchainTestsFiller/InvalidBlocks/bcExample
cp ~/tests/docs/tutorial_samples/06_* ~/tests/src/Bl*/In*/bcExample*
cd ~
./dretesteth.sh -t BlockchainTests/InvalidBlocks/bcExample -- \
 --testpath ~/tests --datadir /tests/config --filltests \
 --singletest 06_invalidBlock

Invalid block tests contain invalid blocks, blocks that
cause a client to raise an exception. To tell retesteth which exception
should be raised by a block, we add an expectException field to the
blockHeader. In that field we put the different forks the test
supports, and the exception we expect to be raised in them. It is a good
idea to have a field that includes future forks.

- blockHeader:
 gasLimit: '30'
 expectException:
 Berlin: TooMuchGasUsed
 '>=London': TooMuchGasUsed

Warning

The expectException field is only used when --filltests is specified.
When it is not, retesteth just expects the processing of the block to fail,
without ensuring the exception is the correct one. The reason for this feature
is that not all clients tell us the exact exception type when they reject a
block as invalid.

 Ethereum Object Format Tests

Ethereum Object Format Tests

Ori Pomerantz

In this tutorial you learn how to write and execute EOF tests.
These tests let you check various combinations to see what is accepted as valid EOF
and what is rejected.

Make sure you understand State Transition Tests
before you start here.

Fillers

The fillers for EOF tests are in …/src/EOFFiller.
This tutorial explains the YML filler,
…/src/EOFFiller/efExample/ymlExampleFiller.yml.

Overall Structure

The file includes these sections:

	_info: Human readable comments.

	data: A list of entries.
Each entry is init code that can create a contract

	expect: The expected results.

The Data Section

Each entry in the data is typically :raw bytes, because we are checking a data
format. However, because EOF is a lot more complicated than most raw data
provided in tests, it is a good idea to use multi-line fields with comments.
For example, this code

- |
 :raw
 0xEF0001 # Magic and version
 010004 # One code segment
 020001 # One code segment
 000a # Code segment zero length: 10 bytes
 030016 # Data segment length (the code being deployed): 0x16=22 bytes
 00 # End of header

This is functionally equivalent to

- :raw 0xEF0001010004020001000a03001600

But a lot more readable.

The Expect Section

Here is a sample expect section entry.

- indexes:
 data:
 - 0-1
 network:
 - '>=Shanghai'
 result: !!bool true

It is very similar to the expect section of a state transition test, except for
these differences:

	In the indexes subsection there is only data.
These tests don’t have gas or value fields to match.

	The result can only be one of two values:

	!!bool true if the contract is supposed to get created

	!!bool false if contract creation is supposed to fail

 Testing EIPs

Testing EIPs

Ori Pomerantz

In this tutorial you learn how to write tests for a new EIP
(after the EIP itself has been implemented on a branch of geth).

Environment

The easiest way to do this is to run restetheth in a docker container you build.
To be able to isolate problems, it is best if the docker container includes both the branch geth and the standard one.

	Get the Dockerfile and the script:

mkdir ~/retestethBuild
cd ~/retestethBuild
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/dretesteth.sh
chmod +x dretesteth.sh
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/Dockerfile

	Edit Dockerfile:

	In the last line of the string of commands that builds geth, remove the && rm -rf /usr/local/go.
We are going to need to compile geth again in a moment.

RUN cd /geth && apt-get install wget \
 && wget https://dl.google.com/go/go1.18.linux-amd64.tar.gz \
 && tar -xvf go1.18.linux-amd64.tar.gz \
 && mv go /usr/local && ln -s /usr/local/go/bin/go /bin/go \
 && make all && cp /geth/build/bin/evm /bin/evm \
 && cp /geth/build/bin/geth /bin/geth \
 && rm -rf /geth

	Duplicate the geth commands, except for these changes:

	Clone a repository that includes the modified geth (it may be a branch of the main geth repository, or a different repository altogether).

	Remove the code that installs the Go programming language.

	Change the binaries to evm-eip and geth-eip.

For example, there is a version of geth here [https://github.com/snreynolds/go-ethereum] with EIP-1153 support.
These are the commands to install and compile it:

RUN git clone --depth 1 https://github.com/snreynolds/go-ethereum /geth
RUN cd /geth && apt-get install wget \
 && make all && cp /geth/build/bin/evm /bin/evm-eip \
 && cp /geth/build/bin/geth /bin/geth-eip \
 && rm -rf /geth && rm -rf /usr/local/go

	Issue ./dretesteth.sh build.

	Run at least one test to initialize the tests/config directory.

	To make life easier, change the ownership of those files:

sudo find tests/config -exec chown `whoami` {} \;

	Copy the t8ntool configuration to t8ntool-eip:

cd tests/config
cp -R t8ntool/ t8ntool-eip

	Edit t8ntool-eip/start.sh to use the evm-eip binary:

#!/bin/sh

if [$1 = "-v"]; then
 /bin/evm-eip -v
else
 stateProvided=0
 for index in ${1} ${2} ${3} ${4} ${5} ${6} ${7} ${8} ${9} ${10} ${11} ${12} ${13} ${14} ${15} ${16} ${17} $
 if [$index = "--input.alloc"]; then
 stateProvided=1
 break
 fi
 done
 if [$stateProvided -eq 1]; then
 /bin/evm-eip t8n ${1} ${2} ${3} ${4} ${5} ${6} ${7} ${8} ${9} ${10} ${11} ${12} ${13} ${14} ${15} ${16$
 else
 /bin/evm-eip t9n ${1} ${2} ${3} ${4} ${5} ${6} ${7} ${8} ${9} ${10} ${11} ${12} ${13} ${14} ${15} ${16$
 fi
fi

	Use --clients t8ntool-eip to run tests with the modified geth.

Test Cases

Most EIPs include multiple test cases, some valid, some not.
In most cases you’ll be able to write either state tests or block tests to verify the functionality.

Testing new Opcodes

The Yul [https://docs.soliditylang.org/en/v0.8.15/yul.html] programming language supports
verbatim opcodes [https://docs.soliditylang.org/en/v0.8.15/yul.html#verbatim].
See here for an example of using verbatim [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stEIP1559/baseFeeDiffPlacesFiller.yml#L39]
(written before the BASEFEE [https://www.evm.codes/#48] opcode was supported by Yul).

Conclusion

At this point you should know enough to test whether geth implements an EIP
correctly or not.

 Blocktests with Ommer / Uncle Blocks

Blocktests with Ommer / Uncle Blocks

Ori Pomerantz

In this tutorial you learn how to write blockchain tests where the chain
includes ommer/uncle blocks [https://ethereum.org/en/glossary/#ommer],
blocks that are not part of the main chain but still deserve a reward.

Uncle Blocks

Uncle blocks are created because there are multiple miners working at any point
in time. If two miners propose a follow-up block for the chain, only one of them
becomes the real block, but the other miner who did the same work also deserves
a reward (otherwise the chances of getting a mining reward will be too low, and there will
be a lot less miners to keep the blockchain going).

[image: Illustration of three main chain block, and an uncle block that also inherits from block 1, and is recognized as an uncle by block 3.]
For example, in the illustration above block #1 was proposed by a miner and accepted.
Then two separate miners created followup blocks labeled as 2. One of them is the block
that was eventually accepted, the green 2. The other one is the orange block that was
eventually rejected. Then a miner (one of the ones above or a separate one) created
block 3 and specified that the green 2 is the parent block and the orange 2 is an
uncle / ommer block (ommer is a gender neutral term for an uncle or aunt). This
way the miner that created the green 2 block gets the full reward (2 ETH), but the one
who created the orange 2 still gets something (1.75 ETH in this case).

Writing Tests

The test writing process for ommer tests is a bit complicated. First you write a test file
such as 11_ommerFiller.yml, which has the uncle information, and run the test. However,
this test always fails. The state root that is calculated by retesteth in the uncle
block is different from the actual state root, because it does not include the payment
to the miner of the uncle block.

Writing the Filler File

The only fields of the uncle block that matter are in the header, so you don’t specify
them in the filler file as blocks, but as a list of uncle block headers. For example,
here is block 4 from 11_ommerFiller.yml [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/11_ommerFiller.yml/].

- blocknumber: 4
 transactions: []
 uncleHeaders:
 - populateFromBlock: 1
 extraData: 0x43
 coinbase: 0xCC
 - populateFromBlock: 2
 extraData: 0x43
 coinbase: 0xBB

As you can see, the uncleHeaders list contains two uncles. The first
is an attempt to continue block 1, so it is an alternative block 2. The second
is an attempt to continue block 2, so it is an alternative block 3.

Note

Most of the header fields are copied from the parent, except for the
ones we explicitly specify (in this case, extraData and coinbase).

 Test Internals

Test Internals

Ori Pomerantz

In this tutorial you learn more about the internal representation of Ethereum
tests and how to run them with additional details. In theory you could write
any test you want without understanding these details, but they are useful
for debugging.

Compiled Tests

By default the compiled version of
tests/src/<test type>Filler/<directory>/<test>Filler goes in
tests/<test type>/<directory><test>.json. For example, after we copy
tests/doc/tutorial_samples/01_add22.yml to
tests/src/GeneralStateTests/stExample/01_add22.yml and compile it,
it is available at
tests/GeneralStateTests/stExample/01_add22.json. Here it is with
explanations:

{
 "01_add22" : {

The _info: section includes any comments you put in the source code of the
test, as well as information about the files used to generate the test
(the test source code, the evm compiler if any, the client software used
to fill in the data, and the tool that actually compiled the test).

"_info" : {
 "comment" : "You can put a comment here",
 "filling-rpc-server" : "Geth-1.9.20-unstable-54add425-20200814",
 "filling-tool-version" : "retesteth-0.0.8-docker+commit.96775cc7.Linux.g++",
 "lllcversion" : "Version: 0.5.14-develop.2020.8.15+commit.9189ad7a.Linux.g++",
 "source" : "src/GeneralStateTestsFiller/stExample/01_add22Filler.yml",
 "sourceHash" : "6b5a88627d0b69c7f61fb05f35ac3f14066d2f4bbe248aa08c3091d7534744d8"
},

The env: and transaction: sections contain the information provided
in the source code.

"env" : {
 ...
 },
"transaction" : {
 ...
 },

The pre: section contains mostly information from the source file,
but any code provided source (either LLL or Solidity) is compiled.

"pre" : {
 "0x095e7baea6a6c7c4c2dfeb977efac326af552d87" : {
 "balance" : "0x0ba1a9ce0ba1a9ce",
 "code" : "0x600260020160005500",
 "nonce" : "0x00",
 "storage" : {
 }
 },
 "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b" : {
 ...
 }
},

The post: section is the situation after the test is run. This could be different for
different versions of the Ethereum protocol [https://en.wikipedia.org/wiki/Ethereum#Milestones],
so there is a value for every version that was checked. In this case, the
only one is Istanbul.

"post" : {
 "Istanbul" : [
 {
 "indexes" : {
 "data" : 0,
 "gas" : 0,
 "value" : 0
 },

Instead of keeping the entire content of the storage and logs that are expected,
it is enough to just store hashes of them.

 "hash" : "0x884b8640efb63506c2f8c2d9514335b678815e1ed362107628cf1cd6edd658c2",
 "logs" : "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"
 }
]
 }
}

Virtual Machine Trace

If you are using the geth t8ntool, can use the --vmtrace command line option
to get a trace of the virtual machine. For example, this is the command to
get a trace of 01_add22:

./dretesteth.sh -t GeneralStateTests/stExample -- --singletest 01_add22 \
 --testpath ~/tests --datadir /tests/config --filltests --vmtrace

Normal Virtual Machine Trace

This is the trace produced by the command above:

VMTrace: (stExample/01_add22, fork: Berlin, TrInfo: d: 0, g: 0, v: 0)
Transaction number: 0, hash: 0x4e6549e2276d1bc256b2a56ead2d9705a51a8bf54e3775fbd2e98c91fb0e4494

N OPNAME GASCOST TOTALGAS REMAINGAS ERROR
0 PUSH1 3 0 79978984
1 PUSH1 3 3 79978981
2 ADD 3 6 79978978
3 PUSH1 3 9 79978975
4 SSTORE 20000 12 79978972
 SSTORE [0x0] = 0x4
5 STOP 0 20012 79958972

{"stateRoot":"0x54d60243629f67e60925f5a9d6daf5f5ee3d774a728aa10c4ef05b8b20b1e192"}

Raw Virtual Machine Trace

The virtual machine trace above does not include the value of the
program counter (PC), the content of the stack, or the full content of the
storage and memory for the account. To get this information
you need the raw trace:

./dretesteth.sh -t GeneralStateTests/stExample -- --singletest 01_add22 \
 --testpath ~/tests --datadir /tests/config --filltests --vmtraceraw | more

The program creates this trace:

VMTrace: (stExample/01_add22, fork: Istanbul, TrInfo: d: 0, g: 0, v: 0)
Transaction number: 0, hash: 0x4e6549e2276d1bc256b2a56ead2d9705a51a8bf54e3775fbd2e98c91fb0e4494

This is the status before the first operation. For the sake of clarity I passed it
through a JSON formatter [https://jsonformatter.curiousconcept.com/].

{

The program counter starts at zero. The opcode at that point is 96, or in
hexadecimal 0x60. Looking at the opcode table [https://github.com/crytic/evm-opcodes], this operation pushes a one byte
value on the stack.

"pc":0,
"op":96,

The amount of gas that is currently available, and the cost of this opcode

"gas":"0x4c461e8",
"gasCost":"0x3",

Current short term (not to be stored as part of the blockchain) values: RAM,
the computation stack, and the return locations stack.

"memory":"0x",
"memSize":0,
"stack":[

],
"returnStack":[

],
"returnData":null,

The depth of the contract call. The contract called directly by the transaction is
depth one. If that contract calls code in a different contract, that code will
run with depth two, etc.

"depth":1,

Contracts get a refund for releasing storage they no longer need by setting it to zero) [https://media.consensys.net/ethereum-gas-fuel-and-fees-3333e17fe1dc#:~:text=Gas%20refund].
This is the amount of the refund.

"refund":0,

The name of the opcode (corresponding to the op value above).

"opName":"PUSH1",

The error, if any.

 "error":""
}

The second operation is almost identical to the first. The differences are:

	The program counter is two, after running an opcode with two bytes (the
opcode itself and the value being pushed)

	The gas counter is lower by three (the cost of the previous operation)

	The stack, rather than empty, has a single value: 0x2.

{"pc":2,"op":96,"gas":"0x4c461e5","gasCost":"0x3","memory":"0x","memSize":0,"stack":["0x2"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"PUSH1","error":""}

Now the evm adds the two top values (turning a stack of [“0x2”, “0x2”] into
[“0x4”]) and then pushes the value zero.

{"pc":4,"op":1,"gas":"0x4c461e2","gasCost":"0x3","memory":"0x","memSize":0,"stack":["0x2","0x2"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"ADD","error":""}
{"pc":5,"op":96,"gas":"0x4c461df","gasCost":"0x3","memory":"0x","memSize":0,"stack":["0x4"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"PUSH1","error":""}

Now we store the value at the second place in the stack at the location in the
first place. This is writing to the state, so it is an expensive operation, costing
twenty thousand gas.

{"pc":7,"op":85,"gas":"0x4c461dc","gasCost":"0x4e20","memory":"0x","memSize":0,"stack":["0x4","0x0"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"SSTORE","error":""}

Finally, stop the evm. The final line gives the output return value, the amount of gas
used, and how long it took to run the program.

{"pc":8,"op":0,"gas":"0x4c413bc","gasCost":"0x0","memory":"0x","memSize":0,"stack":[],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"STOP","error":""}
{"output":"","gasUsed":"0x4e2c","time":527368}

Conclusion

At this point you should be able to write and debug Ethereum tests.

 How to Contribute Tests

How to Contribute Tests

Ori Pomerantz

You’ve written a useful test and now you want to contribute it to
the repository [https://github.com/ethereum/tests]. This tutorial
teaches you how to do it.

Generalizing Tests

Many of our tests started from the need to test a
single scenario, but we figured out related scenarios that are also worth
testing. For example, this test [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml]
started from a request to make a CREATE2 opcode fail at a specific stage [https://github.com/ethereum/tests/issues/909].

However, there were two ways to generalize this:

	There are multiple opcodes [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L200-L216]
that are probably implemented with a number of steps, each of which may have a gas cost.

	Why fail only at one step? If we run the operation with different amounts of gas [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L182-L185],
we can probably trigger failures at each step.

While the state test transaction can only have one direct destination, we can provide
whatever data we want, and that data can be used to calculate an address to call [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L179].
Different addresses can contain contracts with different operations [https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L26-L161].

The easiest way to run multiple tests in a state test is to use different data values. You can use the :abi encoding to
send multiple values. If you use uint, the first value will be available at
$4 (LLL) or calldata(4) (Yul), the second value at $36 / calldata(0x24), etc.

Files

The source/filler test file is written in either YML or JSON and located
under the src directory. This is the type of file explained
in the tutorials.

In addition to the source file, your pull request needs to include the
generated/filled version(s)
of the test file. This version includes additional information, such as
merkle tree roots [https://en.wikipedia.org/wiki/Merkle_tree] of the
current state, the compiled bytecode, etc.

Note

The directions below assume you are running retesteth through docker.
See here if you are not familiar with using **retesteth** that way.

 Adding Transition Tool Support to your Execution Layer Client

Adding Transition Tool Support to your Execution Layer Client

Ori Pomerantz

Note

This document is a tutorial. For reference on the t8ntool options
look here [https://ethereum-tests.readthedocs.io/en/latest/retesteth-ref.html].

 Custom compiler support

Custom compiler support

Ori Pomerantz

In this tutorial you learn how to use a custom compiler with retesteth tests.
We do this by following the steps to write and execute a test written in
the Huff programming language [https://github.com/huff-language/huff-rs].

Why Do This?

Sometimes it is convenient to write a test using a different language than the three supported ones
(LLL [https://lll-docs.readthedocs.io/en/latest/lll_introduction.html],
Solidity [https://docs.soliditylang.org/en/v0.8.15/solidity-by-example.html],
and Yul [https://docs.soliditylang.org/en/v0.8.15/yul.html]).
While such tests are unlikely to be accepted as standard tests, they can help debug client changes.

Install Huff as part of the Docker

One way to do this is to run restetheth
in a docker container you build.

	Get the Dockerfile and the script:

mkdir ~/retestethBuild
cd ~/retestethBuild
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/dretesteth.sh
chmod +x dretesteth.sh
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/Dockerfile

	Edit Dockerfile:

	On line 1 change the original image from Ubuntu 18.04 to Ubuntu 20.04.
This step is necessary because the C libraries on Ubuntu 18.04 are too old for the Huff compiler.

FROM ubuntu:20.04 as retesteth

	On the line that downloads the retesteth source from github change the branch from master
to develop.

RUN git clone --depth 1 -b develop https://github.com/ethereum/retesteth.git /retesteth

	Before the entry point definition add a command to download and configure the Huff compiler.

Huff compiler
RUN curl -L get.huff.sh | bash \
 && ~/.huff/bin/huffup

	Issue ./dretesteth.sh build.

You will receive these errors.
Ignore them, they are merely an artifact of npm and yarn not being installed on the Docker image.

/root/.huff/bin/huffup: line 18: npm: command not found
huffup: warning: It appears your system has an outdated installation of huffc via npm.
huffup: warning: Uninstalling huffc with npm to allow huffup to take precedence...
/root/.huff/bin/huffup: line 21: npm: command not found
/root/.huff/bin/huffup: line 25: yarn: command not found

Update the client configuration

Custom compiler information is provided as part of the client configuration.

	Run at least one test to initialize the tests/config directory.

	To make life easier, change the ownership of those files:

sudo find tests/config -exec chown `whoami` {} \;

	Copy the t8ntool configuration to t8ntool-huff:

cd tests/config
cp -R t8ntool/ t8ntool-huff

	Edit tests/config/t8ntool-huff/config to change the customCompilers definition:

"customCompilers" : {
 ":huff" : "huff.sh"
},

	Create a file, tests/config/t8ntool-huff/huff.sh, to call the Huff compiler

#!/bin/sh
You can call a custom executable here
The code src comes in argument $1 as a path to a file containing the code
So if you have custom compiler installed in the system the command would look like:
mycompiler $1

mv $1 $1.huff
code=`~/.huff/bin/huffc $1.huff -r | grep -v Compiling`
echo 0x$code
rm $1.huff

Make sure your tool output clean bytecode only with no log or debug messages
echo "0x600360005500"

Create a test file that uses Huff

Use this syntax for the code: definition of a contract, such as:

code: |
 :huff
 #define macro MAIN() = takes(0) returns(0) {
 0x01 0x01 add
 0x00 sstore
 stop
 }

The :huff keyword matches the one in tests/config/t8ntool-huff/config,
so the retesteth tool knows to call huff.sh.
It is followed by the Huff code.

You can see a sample test here [https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/13_huffFiller.yml].

 Using Retesteth

Using Retesteth

Command Line Options

Note

There has to be a double dash (--) between the -t option that sets the
suite and all the other options.

 The Retesteth Config Directory

The Retesteth Config Directory

The retesteth config directory contains the retesteth configuration. If it is
empty retesteth creates one with the default values. Every directory under it
contains either the default configuration, or configuration for a specific
client (to override the default for that client).

These directories can contain this information:

	config this file contains the client configuration, a JSON file with these
parameters:

	name, the name of the client

	socketType, the type of socket used to communicate with the client. There
are four supported types: tcp, ipc, ipc-debug, and transition-tool.
The first three are self explanatory. The transition-tool “socket” is used
by t8ntool, which runs a separate instance of evm t8n for each test.

You can find more information about the communication between retesteth
and clients in the t8ntool tutorial.

	socketAddress, the address of the socket, either a list of TCP ports (in
the format <ip>:<port>), a file for IPC, or an executable to run (for
transition-tool).

	customCompilers, definitions for custom compilers.
You can find more information about using custom compilers in the tutorial.

	initializeTime, the time to wait for the client to initialize before
sending it tests.

	forks, the main supported forks.

	additionalForks, additional forks, which are supported but only if they
are specified explicitly.

For example, if a client’s config file specifies:

"forks" : [
 "EIP158",
 "Byzantium",
 "Constantinople",
 "ConstantinopleFix",
 "Istanbul",
 "Berlin"
],
"additionalForks" : [
 "EIP158ToByzantiumAt5",
 "HomesteadToDaoAt5",
 "ByzantiumToConstantinopleFixAt5"
],

And the test specifies >=Byzantium, it will test these forks:

	Byzantium

	Constantinople

	ConstantinopleFix

	Istanbul

	Berlin

But not additional forks such as ByzantiumToConstantinopleFixAt5.

	exceptions, the exception messages that the client emits for blocks that
are invalid in various ways. The key is the string used to identify the exception
in the expectException field of invalid block tests. The value is the message
the client emits.

Note

The exception is only checked if:

	--filltests is specified.

	The test is in BlockchainTests/InvalidBlocks.

Otherwise, either
retesteth only checks that an exception occurred, not which exception it
was (without --filltests), or treats any exception as an abort (if the
test is not for invalid blocks).

 Transition Tool

Transition Tool

Command Line Parameters

The command line parameters are used to specify the parameters, input files, and
output files.

In the t8ntool client provided with the system, which uses geth, the commands being called are:

	evm t8n For state transition and blockchain tests.

	evm t9n For transaction tests.

However, you can change that by editing the tests/config/t8ntool/start.sh file.

Test Parameters

	--state.fork fork name

	--state.reward block mining reward (appears only in Block tests)

	--trace produce a trace

Input Files

	--input.env full path to environment file

	--input.alloc full path to pretest allocation file with the state

	--input.txs full path to transaction file

State transition and blockchain tests have all three input file parameters.
Transaction tests, which only test transaction parsing, only have the --input.txs parameter.

Note

If you want to specify any of this information in stdin, either
omit the parameter or use the value stdin.

 The RPC Interface

The RPC Interface

Some clients, such as besu [https://www.hyperledger.org/use/besu], run tests
using this interface. This allows the client to run anywhere there is connectivity
to the system running retesteth.

In addition to requiring some of the standard Ethereum RPC function [https://ethereum.org/en/developers/docs/apis/json-rpc/#top], retesteth
requires some specific functions to setup and execute tests.

Retesteth-Specific RPCs

debug_accountRange

Get a list of accounts at a certain point in time.

Parameters

	string _blockHashOrNumber: The hash or number of the block

	int _txIndex: Transaction index for the point in which we want the list of accounts

	string _addressHash: The hash at which to start the list
If _maxResults is equal to the number of accounts or more than that then
we receive all the addresses
and there is no problem. But if there are too many accounts to report them all, we
receive the next hash at which we can find an address. We then call this method again,
with that value in _addressHash, to get the next batch of addresses.

	int _maxResults: Maximum number of results

Result

	addressMap: An object with hash values and the addresses they represent. We use
the hashes (both here and in the _addressHash parameter) because that is the
order in which addresses are stored in the client, so the easiest order to for
paged retrieval.

	nextKey: The next hash (in case there are more addresses to
return than _maxResults.

Sample Request

{
 "jsonrpc": "2.0",
 "method": "debug_accountRange",
 "params": [
 "1",
 1,
 "0x0001",
 10
],
 "id": 9
}

This request came from a state transition test, which means that there is only
one block and within it only one transaction.

	_blockHashOrNumber: The block number, which is one (the only block there is)

	_txIndex: We want the state after one transaction (the only transaction
in the block)

	_addressHash: This is the first request, so we want to start at the
beginning.

	_maxResults: We want up to ten results.

Sample Result

{
 "jsonrpc": "2.0",
 "id": 9,
 "result": {
 "addressMap": {
 "0x03601462093b5945d1676df093446790fd31b20e7b12a2e8e5e09d068109616b": "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",
 "0x0fbc62ba90dec43ec1d6016f9dd39dc324e967f2a3459a78281d1f4b2ba962a6": "0x095e7baea6a6c7c4c2dfeb977efac326af552d87",
 "0x9d860e7bb7e6b09b87ab7406933ef2980c19d7d0192d8939cf6dc6908a03305f": "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba"
 },
 "nextKey": "0x00"
 }
}

	addressMap: Three entries, there are three addresses with meaningful information.

	nextKey: Zero, because there are no more results to return.

debug_storageRangeAt

Get a list of storage values.

Parameters

	string _blockHashOrNumber: The hash or number of the block

	int _txIndex: Transaction index for the point in which we want the list of accounts

	string _address: Read storage values for this address.

	string _begin: Start from this hash

	int _maxResults: Maximum number of results

Result

	storage: An object with hash values, and for each of them the key and value it
represents.

	complete: Boolean value, true if this completes the storage entries.

Sample Request

{
 "jsonrpc": "2.0",
 "method": "debug_storageRangeAt",
 "params": [
 "1",
 1,
 "0x095e7baea6a6c7c4c2dfeb977efac326af552d87",
 "0x00",
 20
],
 "id": 17
}

	string _blockHashOrNumber: One, the only valid value for a state test

	int _txIndex: One, the only valid value for a state test

	string _address: An address

	string _begin: Start from the beginning, zero

	int _maxResults: Read up to twenty results

Sample Result

{
 "jsonrpc": "2.0",
 "id": 17,
 "result": {
 "storage": {
 "0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563": {
 "key": "0x00",
 "value": "0x02"
 },
 "0x8a8c65155279fdd366bbe4502fff15c2162ef3f469afd7533efe047403a26923" : {
 "key" : "0x60a7",
 "value" : "0x60a7"
 }
 },
 "complete": true
 }
}

	storage: An object with two hash values, each of which has the key and value that
it represents.

	complete: True, this is the entire storage.

debug_traceTransaction

Get the virtual machine trace of a transaction. Not currently implemented.

test_mineBlocks

Put the existing valid transactions into the current block and finish it, and create
a number of blocks after it.

Parameters

	int _number: The number of blocks to create after the current block.

Result

Boolean value, true if successful

Sample Request

{
 "jsonrpc": "2.0",
 "method": "test_mineBlocks",
 "params": [
 1
],
 "id": 28
}

Create one additional block

Sample Result

{
 "jsonrpc": "2.0",
 "id": 28,
 "result": true
}

Success

test_modifyTimestamp

Parameters

	int _timestamp: The new timestamp

Result

Boolean value, true if successful

Sample Request

{
 "jsonrpc": "2.0",
 "method": "test_modifyTimestamp",
 "params": [
 1000
],
 "id": 2
}

Change the timestamp to 1000. This value is a Unix timetamp [https://www.unixtimestamp.com/], 1000 second after midnight
on January 1st, 1970, GMT.

Sample Result

{
 "jsonrpc": "2.0",
 "id": 2,
 "result": true
}

Success

test_rewindToBlock

Revert the state of the blockchain to a specific block number.
Cancel the blocks after it, which lets us run multiple tests without having to
setup a new genesis block for each one.

Parameters

	int _block: The number of the last block that is not cancelled. If it is
the genesis block, this value is zero.

Result

Boolean value, true if successful

Sample Request

{
 "jsonrpc": "2.0",
 "method": "test_rewindToBlock",
 "params": [
 0
],
 "id": 22
}

Rewind all the way to the genesis block.

Sample Result

{
 "jsonrpc": "2.0",
 "id": 22,
 "result": true
}

Success

test_setChainParams

This method tells a client to initialize a test chain to a given state.

Parameters

An object that contains the chain parameters for the test:

	params: Chain parameters:
- chainID: The chain identifier.
- <fork>ForkBlock: The block in which that fork starts on this chain.

	accounts: The accounts at the test’s start. This is an object whose
keys are the addresses of the accounts. For each account there are these
parameters (all the scalar values are strings with a hexadecimal number in them):
- balance: Balance in wei
- code: The EVM code (0x if there is none).
- nonce: The nonce for the next transaction from this address.
- storage: An object with keys and their values.

	sealEngine: Currently always NoReward.

	genesis: The parameters of the genesis block.

Result

Boolean value, true if successful

Sample Request

{
 "jsonrpc": "2.0",
 "method": "test_setChainParams",
 "params": [
 {
 "params": {
 "homesteadForkBlock": "0x00",
 "EIP150ForkBlock": "0x00",
 "EIP158ForkBlock": "0x00",
 "byzantiumForkBlock": "0x00",
 "constantinopleForkBlock": "0x00",
 "constantinopleFixForkBlock": "0x00",
 "istanbulForkBlock": "0x00",
 "berlinForkBlock": "0x00",
 "chainID": "0x01"
 },
 "accounts": {
 "0x095e7baea6a6c7c4c2dfeb977efac326af552d87": {
 "balance": "0x0de0b6b3a7640000",
 "code": "0x600160010160005500",
 "nonce": "0x00",
 "storage": {}
 },
 "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba": {
 "balance": "0x00",
 "code": "0x",
 "nonce": "0x01",
 "storage": {}
 },
 "0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b": {
 "balance": "0x0de0b6b3a7640000",
 "code": "0x",
 "nonce": "0x00",
 "storage": {}
 }
 },
 "sealEngine": "NoReward",
 "genesis": {
 "author": "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba",
 "difficulty": "0x020000",
 "gasLimit": "0xff112233445566",
 "extraData": "0x00",
 "timestamp": "0x00",
 "nonce": "0x0000000000000000",
 "mixHash": "0x00"
 }
 }
],
 "id": 1
}

Sample Result

{
 "jsonrpc": "2.0",
 "id": 1,
 "result": true
}

Success

Standard RPCs Retesteth Uses

	eth_blockNumber [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_blocknumber]

	eth_getBalance [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getbalance]

	eth_getBlockByNumber [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getblockbynumber]

	eth_getCode [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getcode]

	eth_getTransactionCount [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_gettransactioncount]

	eth_sendRawTransaction [https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sendrawtransaction]

	web3_clientVersion [https://ethereum.org/en/developers/docs/apis/json-rpc/#web3_clientversion]

 Blockchain Tests

