
Ethereum Tests Documentation
Release 0.2

Ethereum Community

Sep 19, 2023

Tutorial:

1 Retesteth 3
1.1 Retesteth through the Web . 3

1.1.1 Request Helper . 3
1.1.2 Request Single File . 3
1.1.3 Custom Command . 4

1.2 Retesteth in a Docker Container . 4
1.2.1 How Does This Work? . 5

1.3 Test Against Your Client . 6
1.3.1 Replace geth Inside the Docker . 6
1.3.2 Client Outside the Docker, Keep Configuration Files Intact 6
1.3.3 Client Inside the Docker, Modify Configuration Files . 7
1.3.4 Client Outside the Docker, Modify Configuration Files . 7

1.4 Running Multiple Threads . 8
1.5 Using the Latest Version . 8
1.6 Conclusion . 8

2 State Transition Tests 11
2.1 The Environment . 11
2.2 Compiling Your First Test . 11

2.2.1 The Source Code . 12
2.2.2 Failing a Test . 14
2.2.3 Tests that are Supposed to Fail . 14

2.3 Yul Tests . 15
2.4 Solidity Tests . 15

2.4.1 ABI values . 16
2.5 Multitest Files . 17

2.5.1 Multiple Tests, Same Result . 18
2.6 Conclusion . 19

3 Blockchain Tests 21
3.1 The Environment . 21
3.2 Types of Blockchain Tests . 21
3.3 Valid Block Tests . 21

3.3.1 Test Source Code . 22
3.3.2 Tests using the blockchain random value . 23

3.4 Invalid Block Tests . 24
3.4.1 Getting Exception Names . 25

i

3.5 Transition Tests . 25
3.6 Conclusion . 25

4 Ethereum Object Format Tests 27
4.1 Fillers . 27

4.1.1 Overall Structure . 27
4.1.2 The Data Section . 27
4.1.3 The Expect Section . 28

5 Testing EIPs 29
5.1 Environment . 29
5.2 Test Cases . 31
5.3 Testing new Opcodes . 31
5.4 Conclusion . 31

6 Blocktests with Ommer / Uncle Blocks 33
6.1 Uncle Blocks . 33
6.2 Writing Tests . 34

6.2.1 Writing the Filler File . 34
6.2.2 Correcting the State Root . 35

6.3 Conclusion . 36

7 Test Internals 37
7.1 Compiled Tests . 37
7.2 Virtual Machine Trace . 38

7.2.1 Normal Virtual Machine Trace . 39
7.2.2 Raw Virtual Machine Trace . 39

7.3 Conclusion . 41

8 How to Contribute Tests 43
8.1 Generalizing Tests . 43
8.2 Files . 43

8.2.1 State Tests . 44
8.2.2 Blockchain Tests . 44

8.3 Conclusion . 44

9 Adding Transition Tool Support to your Execution Layer Client 45
9.1 Why Do This? . 45
9.2 Configuration . 45
9.3 Command line parameters . 46

9.3.1 Transaction tests . 46
9.3.2 State transition tests . 46
9.3.3 Blockchain tests . 47

9.4 Minimal t8ntool client . 47

10 Custom compiler support 49
10.1 Why Do This? . 49
10.2 Install Huff as part of the Docker . 49
10.3 Update the client configuration . 50
10.4 Create a test file that uses Huff . 51

11 Using Retesteth 53
11.1 Command Line Options . 53

11.1.1 Set The Suite . 53
11.1.2 Retesteth Options . 54

ii

11.1.3 Setting the Test Suite and Test . 54
11.1.4 Debugging . 54
11.1.5 Additional Tests . 55
11.1.6 Test Generation . 56

11.2 Examples . 56

12 The Retesteth Config Directory 59

13 Transition Tool 63
13.1 Command Line Parameters . 63

13.1.1 Test Parameters . 63
13.1.2 Input Files . 63
13.1.3 Output Files . 64

13.2 File Structures . 64
13.2.1 Transaction File . 64
13.2.2 Environment File . 64
13.2.3 Allocation Files . 65
13.2.4 Result File . 65
13.2.5 Trace Files . 66

13.3 Using Standard Input and Output . 67
13.3.1 Input . 67
13.3.2 Output . 67

14 The RPC Interface 69
14.1 Retesteth-Specific RPCs . 69

14.1.1 debug_accountRange . 69
14.1.2 debug_storageRangeAt . 70
14.1.3 debug_traceTransaction . 72
14.1.4 test_mineBlocks . 72
14.1.5 test_modifyTimestamp . 73
14.1.6 test_rewindToBlock . 73
14.1.7 test_setChainParams . 74

14.2 Standard RPCs Retesteth Uses . 76

15 Blockchain Tests 77
15.1 Blockchain Tests Source Code . 77

15.1.1 Subfolders . 77
15.1.2 Test Structure . 77
15.1.3 Genesis Block . 78
15.1.4 Pre . 80
15.1.5 Blocks . 82
15.1.6 Transaction . 84
15.1.7 Expect . 86

15.2 Generated Blockchain Tests . 88
15.2.1 Test Structure . 88
15.2.2 Info Section . 89
15.2.3 Pre/preState Section . 89
15.2.4 GenesisBlockHeader Section . 90
15.2.5 Valid Block Section . 91
15.2.6 Invalid Block Section . 93
15.2.7 Transaction Section . 93

16 Ethereum Object Format Tests 95
16.1 Ethereum Test Format Source Code . 95

16.1.1 Test Structure . 95

iii

16.1.2 Transaction . 95
16.1.3 Expect . 96

16.2 Generated Ethereum Object Format . 97
16.2.1 Test Structure . 97

17 State Transition Tests 99
17.1 State Transition Tests Source Code . 99

17.1.1 Test Structure . 99
17.1.2 Env . 100
17.1.3 Pre . 101
17.1.4 Transaction . 103
17.1.5 Expect . 104

17.2 Generated State Transition Tests . 107
17.2.1 Test Structure . 107
17.2.2 Info Section . 107
17.2.3 Env Section . 108
17.2.4 Post Section . 108
17.2.5 Pre/preState Section . 109
17.2.6 Transaction Section . 110

18 Sample Values 113
18.1 ABI Tests . 113
18.2 Difficulty Test . 114

18.2.1 Test Implementation . 114
18.2.2 Test Structure . 114

18.3 RLP Test . 115
18.3.1 Test Implementation . 115
18.3.2 Test Structure . 115

18.4 Transaction Test . 116
18.4.1 Test Implementation . 116
18.4.2 Test Structure . 116
18.4.3 Transaction Section . 117

18.5 Trie Tests . 118
18.5.1 Next and Previous Test . 119

18.6 Miscellaneous Tests . 119
18.6.1 Cryptographic Tests . 119
18.6.2 Encoding Tests . 119
18.6.3 Genesis Block Tests . 119

19 Contribute to Docs 121

20 Indices and tables 123

iv

Ethereum Tests Documentation, Release 0.2

Common tests for all clients to test against. The git repo updated regulary with new tests.
This section describes basic test concepts and templates which are created by cpp-client.

Note: See Contribute to Docs if you want to help improve this documentation.

Tutorial: 1

https://github.com/ethereum/tests

Ethereum Tests Documentation, Release 0.2

2 Tutorial:

CHAPTER 1

Retesteth

Ori Pomerantz

Note: This document is a tutorial. For reference on the retesteth options, look here.

1.1 Retesteth through the Web

The easiest way to run the tests is through the web interface.

1.1.1 Request Helper

To run an existing state test, you can use the request helper. You set these parameters:

Parameter Meaning Sample Value
GeneralStateTests/ test suite stExample
–singletest name of test add11
–clients client to use t8ntool (the value for geth)
–singlenet fork to use Berlin
–vmtrace trace to produce raw
–verbosity log verbosity none

When a test file contains multiple tests you can restrict which ones you’ll run with the -d, -g, and -v parameters.

1.1.2 Request Single File

You can run a single test, either state test or blockchain test, using the request single file option. You specify the test
type and then upload a test file. Here are the parameters:

3

mailto://qbzzt1@gmail.com
https://ethereum-tests.readthedocs.io/en/latest/retesteth-ref.html
http://retesteth.ethdevops.io/web/
https://ethereum-tests.readthedocs.io/en/latest/state-transition-tutorial.html
https://ethereum-tests.readthedocs.io/en/latest/state-transition-tutorial.html#multitest-files
https://ethereum-tests.readthedocs.io/en/latest/blockchain-tutorial.html

Ethereum Tests Documentation, Release 0.2

Parameter Meaning Sample Value
-t test suite test type (state or blockchain)
–testfile The file to test you upload this file
–clients client to use t8ntool (the value for geth)
–vmtrace trace to produce raw
–filltests test file type see below

If –filltests is set to none, you need to upload a generated test file. You can find those here (for state tests), and here
(for blockchain tests).

If –filltests is set to filltests then you can upload a filler test file, which you can write yourself. This is documented in
this tutorial (for state tests) and this one (for blockchain tests).

1.1.3 Custom Command

The command line parameters for retesteth are documented here. You can use this option to run whatever parameters
you want.

1.2 Retesteth in a Docker Container

If you want to run the tests locally you can run retesteth inside a Docker container.

These directions are written using Debian Linux 11 on Google Cloud Platform (using a 20 GB disk - the default 10
GB is not enough), but should work with minor changes on any other version of Linux running anywhere else with an
Internet connection.

1. Install docker. You may need to reboot afterwards to get the latest kernel version.

sudo apt install -y wget docker docker.io

2. Download the latest retesteth docker image

wget http://retesteth.ethdevops.io/dretesteth.tar

3. Load the docker image:

sudo docker image load --input dretesteth.tar

4. Download the dretesteth.sh script.

wget https://raw.githubusercontent.com/ethereum/retesteth/master/dretesteth.sh
chmod +x dretesteth.sh

5. Download the tests:

git clone --branch develop https://github.com/ethereum/tests.git

6. Run a test. This has two purposes:

• Create the retesteth configuration directories in ~/tests/config, where you can modify them.

• A sanity check (that you can run tests successfully).

4 Chapter 1. Retesteth

https://github.com/ethereum/tests/tree/develop/GeneralStateTests
https://github.com/ethereum/tests/tree/develop/BlockchainTests
https://github.com/ethereum/tests/tree/develop/BlockchainTests
https://ethereum-tests.readthedocs.io/en/latest/state-transition-tutorial.html
https://ethereum-tests.readthedocs.io/en/latest/state-transition-tutorial.html
https://ethereum-tests.readthedocs.io/en/latest/blockchain-tutorial.html
https://ethereum-tests.readthedocs.io/en/latest/retesteth-ref.html
https://retesteth.ethdevops.io/dretesteth.tar

Ethereum Tests Documentation, Release 0.2

sudo ./dretesteth.sh -t GeneralStateTests/stExample -- \
--testpath ~/tests --datadir /tests/config

The output should be similar to:

Running tests using path: /tests
Running 1 test case...
Retesteth config path: /tests/config
Active client configurations: 't8ntool '
Running tests for config 'Ethereum GO on StateTool' 2
Test Case "stExample": (1 of 1)
25%...
50%...
75%...
100%

*** No errors detected

*** Total Tests Run: 12

Note: The /tests directory is referenced inside the docker container. It is the same as the ~/tests directory
outside it.

If you get the following error:

Tests folder does not exists, creating test folder: '/tests/GeneralStateTests/
→˓stExample'
WARNING: /tests/src/GeneralStateTestsFiller/stExample does not exist!
WARNING: stExample no tests detected in folder!
Running tests for config 'Ethereum GO on StateTool' 2

*** No errors detected
WARNING: /tests/src/GeneralStateTestsFiller does not exist!

*** Total Tests Run: 0

try moving the dretesteth.sh file and cloned tests folder to your home directory (~).

7. To avoid having to run with sudo all the time, add yourself to the docker group and open a new console.

sudo usermod -a -G docker `whoami`

1.2.1 How Does This Work?

A docker container is similar to a virtual machine, except that it doesn’t run a separate instance of the operating system
inside itself so it takes far less resources. One of the features of docker is that it can mount a directory of the host
computer inside its own file system. The –testpath parameter to dretesteth.sh tells it what directory to mount, in this
case ~/tests which you just cloned from github. It mounts it as /tests inside the container.

By default the retesteth configuration files are in ~/.retesteth. However, that directory is not accessible to us outside
the docker. Instead, we use –datadir /tests/config to tell it to use (or create) the configuration in what appears to us to
be ~/tests/config, which is easily accessible.

1.2. Retesteth in a Docker Container 5

https://www.docker.com/resources/what-container

Ethereum Tests Documentation, Release 0.2

1.3 Test Against Your Client

There is an instance of geth inside the docker container that you can run tests against. However, unless you are
specifically developing tests what you want is to test your client. There are several ways to do this:

• Replace the geth inside the docker.

• Keep the client on the outside and keep the configuration files intact

• Put your client, and any prerequisites, inside the docker and change the configuration files

• Keep your client on the outside and connect to it through the network and change the configuration files

When we ran the test in the previous section we also created those configuration files in ~/tests/config, but they were
created as being owned by root. If you need to edit them, change the permissions of the config files. To change the
configuration files to your own user, run this command:

sudo find ~/tests/config -exec chown $USER {} \; -print

If you look inside ~/tests/config, you’ll see a directory for each configured client. Typically this directory has these
files:

• config, which contains the configuration for the client:

– The communication protocol to use with the client (typically TCP)

– The address(es) to use with that protocol

– The forks the client supports

– The exceptions the client can throw, and how retesteth should interpret them. This is particularly important
when testing the client’s behavior when given invalid blocks.

• start.sh, which starts the client inside the docker image

• stop.sh, which stops the client instance(s)

• genesis, a directory which includes the genesis blocks for various forks the client supports. If this directory does
not exist for a client, it uses the genesis blocks for the default client.

Click here for additional documentation. Warning: This documentation may not be up to date

1.3.1 Replace geth Inside the Docker

If you want to test a modified version of geth, you can just build it inside the docker container. To do so, recreate
the docker container. Before you run sudo ./dretesteth.sh build edit the line that specifies the geth repository. Use
whatever repository you use to store your modified version of geth.

1.3.2 Client Outside the Docker, Keep Configuration Files Intact

If you want to run your client outside the docker without changing the configuration, these are the steps to follow.

1. Make sure that the routing works in both directions (from the docker to the client and from the client back to the
docker). You may need to configure network address translation.

2. Run your client. Make sure that the client accepts requests that don’t come from localhost. For example, to run
geth use:

geth --http --http.addr 0.0.0.0 retesteth

6 Chapter 1. Retesteth

https://github.com/ethereum/retesteth/wiki/Add-client-configuration-to-Retesteth
https://github.com/ethereum/retesteth/blob/master/Dockerfile#L41
https://www.slashroot.in/linux-nat-network-address-translation-router-explained

Ethereum Tests Documentation, Release 0.2

To run besu use:

docker run -p 8545:8545 -p 13001:30303 \
hyperledger/besu:latest retesteth --rpc-http-port 8545 \
--host-allowlist '*'

3. Run the test the same way you would for a client that runs inside docker, but with the addition of the –nodes
parameter. Also, make sure the –clients parameter is set to the client you’re testing.

./dretesteth.sh -t BlockchainTests/ValidBlocks/VMTests -- \
--testpath ~/tests --datadir /tests/config --clients geth \
--nodes \<ip\>:\<port, usually defaults to 8545\>

1.3.3 Client Inside the Docker, Modify Configuration Files

If you want to run your client inside the docker, follow these steps:

1. Move the client into ~/tests, along with any required infrastructure (virtual machine software, etc). If you just
want to test the directions right now, you can download geth here.

2. Modify the appropriate start.sh to run your version of the client instead. For example, you might edit
~/tests/config/geth/start.sh to replace geth with /tests/geth in line ten if you put your version of geth in ~/tests.

3. Run the tests, adding the –clients <name of client> parameter to ensure you’re using the correct configuration.
For example, run this command to run the virtual machine tests on geth:

./dretesteth.sh -t BlockchainTests/ValidBlocks/VMTests -- --testpath \
~/tests --datadir /tests/config --clients geth

1.3.4 Client Outside the Docker, Modify Configuration Files

If you want to run your client outside the docker and specify the connectivity in the configuration files, these are the
steps to follow:

1. Create a client in ~/tests/config that doesn’t have start.sh and stop.sh. Typically you would do this by copying
an existing client, for example:

mkdir ~/tests/config/gethOutside
cp ~/tests/config/geth/config ~/tests/config/gethOutside

2. If you want to specify the IP address and port in the config file, modify the host in the socketAddress to the
appropriate remote address. This address needs to work with the JSON over RPC test protocol.

For example,

{
"name" : "Ethereum GO on TCP",
"socketType" : "tcp",
"socketAddress" : ["10.128.0.14:8545"],
...

}

3. Make sure that the routing works in both directions (from the docker to the client and from the client back to the
docker). You may need to configure network address translation.

4. Run your client. Make sure that the client accepts requests that don’t come from localhost. For example, to run
geth use:

1.3. Test Against Your Client 7

https://geth.ethereum.org/downloads/
https://en.wikipedia.org/wiki/JSON-RPC
https://www.slashroot.in/linux-nat-network-address-translation-router-explained

Ethereum Tests Documentation, Release 0.2

geth --http --http.addr 0.0.0.0 retesteth

5. Run the test the same way you would for a client that runs inside docker:

./dretesteth.sh -t BlockchainTests/ValidBlocks/VMTests -- \
--testpath ~/tests --datadir /tests/config --clients gethOutside

1.4 Running Multiple Threads

To improve performance you can run tests across multiple threats. To do this:

1. If you are using start.sh start multiple nodes with different ports

2. Provide the IP addresses and ports of the nodes, either in the config file or the –nodes parameter

3. Run with the parameters -j <number of threads>.

1.5 Using the Latest Version

The version of retesteth published as a docker file may not have the latest updates. If you want the latest features, you
need to build an image from the develop branch yourself:

1. Install docker.

sudo apt install -y wget docker docker.io

2. Download the dretesteth.sh script and the Dockerfile. Make sure to do this in an otherwise empty directory,
because the docker builder copies everything in or below the directory where Dockerfile is located.

mkdir ~/retestethBuild
cd ~/retestethBuild
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/dretesteth.sh
chmod +x dretesteth.sh
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/Dockerfile

3. Modify the RUN git clone line in the Dockerfile for repo “retesteth” to change branch -b from master to
develop. Do not modify repo branches for “winsvega/solidity” [LLLC opcode support] and “go-ethereum”.

4. Build the docker image yourself:

sudo ./dretesteth.sh build

Note: This is a slow process. It took me about an hour on a GCP e2-medium instance.

1.6 Conclusion

In most cases people don’t start their own client from scratch, but modify an existing client. If the existing client is
already configured to support retesteth, you should now be able to run tests on a modified version to ensure it still
conforms to Ethereum specifications. If you are writing a completely new client, you still need to implement the RPC
calls that retesteth uses and to write the appropriate configuration (config, start.sh, and stop.sh) for it.

8 Chapter 1. Retesteth

http://retesteth.ethdevops.io/

Ethereum Tests Documentation, Release 0.2

There are several actions you might want to do with retesteth beyond testing a new version of an existing client. Here
are links to documentation. Note that it hasn’t been updated in a while, so it may not be accurate.

• Add configuration for a new client. To do this you need to add retesteth support to the client itself and create
a new config for it

• Test with a new fork of Ethereum. New forks usually mean new opcodes. Therefore, you will need a docker
with a new version of lllc.

If you want to write your own tests, read the next tutorial.

1.6. Conclusion 9

https://github.com/ethereum/retesteth/wiki/RPC-Methods
https://github.com/ethereum/retesteth/wiki/Add-client-configuration-to-Retesteth
https://github.com/ethereum/retesteth/wiki/Add-client-configuration-to-Retesteth
https://lll-docs.readthedocs.io/en/latest/lll_compiler.html

Ethereum Tests Documentation, Release 0.2

10 Chapter 1. Retesteth

CHAPTER 2

State Transition Tests

Ori Pomerantz

In this tutorial you learn how to write and execute Ethereum state transition tests. These tests can be very simple, for
example testing a single evm assembler opcode, so this is a good place to get started. This tutorial is not intended as a
comprehensive reference, look in the table of content on the left.

2.1 The Environment

Before you start, make sure you read and understand the Retesteth Tutorial, and create the docker environment ex-
plained there.

2.2 Compiling Your First Test

Before we get into how tests are built, lets compile and run a simple one.

1. The source code of the tests is in tests/src. It is complicated to add another tests directory, so we will use
GeneralStateTestsFiller/stExample.

cd ~/tests/src/GeneralStateTestsFiller/stExample
cp ~/tests/docs/tutorial_samples/01* .
cd ~

2. The source code of tests doesn’t include all the information required for the test. Instead, you run retesteth.sh,
and it runs a client with the Ethereum Virtual Machine (evm) to fill in the values. This creates a compiled version
in tests/GeneralStateTests/stExample.

./dretesteth.sh -t GeneralStateTests/stExample -- \
--singletest 01_add22 --testpath ~/tests \
--datadir /tests/config --filltests

sudo chown $USER tests/GeneralStateTests/stExample/*

11

mailto://qbzzt1@gmail.com
retesteth-tutorial.html

Ethereum Tests Documentation, Release 0.2

3. Run the test normally, with verbose output:

./dretesteth.sh -t GeneralStateTests/stExample -- \
--singletest 01_add22 --testpath ~/tests \
--datadir /tests/config --clients geth --verbosity 5

2.2.1 The Source Code

Now that we’ve seen that the test works, let’s go through it line by line. This test specification is written in YAML, if
you are not familiar with this format click here.

All the fields are defined under the name of the test. Note that YAML comments start with a hash (#) and continue to
the end of the line.

If you want to follow along with the full source code You can see the complete code, here

The name of the test
01_add22:

This is the general Ethereum environment before the transaction:

env:
currentCoinbase: 2adc25665018aa1fe0e6bc666dac8fc2697ff9ba
currentDifficulty: '0x20000'
currentGasLimit: 10_000_000

You can put underscores (_) in numbers to make them more readable.

currentNumber: 1
currentTimestamp: "1000"
previousHash: 5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6

This is where you put human readable information. In contrast to # comments, these comment fields get copied to the
compiled JSON file for the test.

_info:
comment: "You can put a comment here"

These are the relevant addresses and their initial states before the test starts:

pre:

This is a contract address. As such it has code, which can be in one of three languages:

1. Ethereum virtual machine (EVM) machine language

2. Lisp Like Language (lll). One advantage of lll is that it lets us use Ethereum Assembler almost directly.

3. Solidity, which is the standard language for Ethereum contracts. Solidity is well known, but it is not ideal for
VM tests because it adds its own code to compiled contracts. Click here for a test written in Solidity.

4. The Yul language, which is a low level language for the EVM. Click here for a test written in Yul.

095e7baea6a6c7c4c2dfeb977efac326af552d87:
balance: '0x0ba1a9ce0ba1a9ce'

LLL code can be very low level. In this case, (ADD 2 2) is translated into three opcodes:

• PUSH 2

12 Chapter 2. State Transition Tests

https://www.tutorialspoint.com/yaml/index.htm
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/01_add22Filler.yml
http://blog.syrinx.net/the-resurrection-of-lll-part-1/
https://lll-docs.readthedocs.io/en/latest/lll_reference.html#evm-opcodes
https://cryptozombies.io/
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/03_solidityFiller.yml
https://docs.soliditylang.org/en/v0.8.6/yul.html
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/09_yulFiller.yml

Ethereum Tests Documentation, Release 0.2

• PUSH 2

• ADD (which pops the last two values in the stack, adds them, and pushes the sum into the stack).

This expression [[0]] is short hand for (SSTORE 0 <the value at the top of the stack>). It stores the value (in this
case, four) in location 0.

code: |
{
; Add 2+2
[[0]] (ADD 2 2)

}
nonce: '0'

Every address in Ethereum has associated storage, which is essentially a lookup table. You can read more about it
here. In this case the storage is initially empty.

storage: {}

This is a “user” address. As such, it does not have code. Note that you still have to specify the storage.

a94f5374fce5edbc8e2a8697c15331677e6ebf0b:
balance: '0x0ba1a9ce0ba1a9ce'
code: '0x'
nonce: '0'
storage: {}

This is the transaction that will be executed to check the code. There are several scalar fields here:

• gasPrice is the price of gas in Wei. Note that starting with the London fork the block base fee is ten by default,
and a lower gasPrice will get rejected.

• nonce has to be the same value as the user address

• to is the contract we are testing. If you want to create a contract, keep the to definition, but leave it empty.

Additionally, these are several fields that are lists of values. The reason to have lists instead of a single value is to be
able to run multiple similar tests from the same file (see the Multitest Files section below).

• data is the data we send

• gasLimit is the gas limit

• value is the amount of Wei we send with the transaction

transaction:
data:
- '0x10'
gasLimit:
- '80000000'
gasPrice: 1000
nonce: '0'
to: 095e7baea6a6c7c4c2dfeb977efac326af552d87
value:
- '1'

This is the state we expect after running the transaction on the pre state. The indexes: subsection is used for multitest
files, for now just copy and paste it into your tests.

2.2. Compiling Your First Test 13

https://applicature.com/blog/blockchain-technology/ethereum-smart-contract-storage
https://applicature.com/blog/blockchain-technology/ethereum-smart-contract-storage
https://blog.ethereum.org/2021/07/15/london-mainnet-announcement/

Ethereum Tests Documentation, Release 0.2

expect:
- indexes:

data: !!int -1
gas: !!int -1
value: !!int -1

network:
- '>=London'

We expect the contract’s storage to have the result, in this case 4.

result:
095e7baea6a6c7c4c2dfeb977efac326af552d87:
storage:

0x00: 0x04

2.2.2 Failing a Test

To verify that retesteth really does run tests, lets fail one. The **02_fail** test is almost identical to 01_add22, except
that it expects to see that 2+2=5. Here are the steps to use it.

1. Copy the test to the stExample directory:

cp ~/tests/docs/tutorial_samples/02* ~/tests/src/GeneralStateTestsFiller/stExample

2. Fill the information and run the test:

./dretesteth.sh -t GeneralStateTests/stExample -- \
--singletest 02_fail --testpath ~/tests \
--datadir /tests/config --filltests

3. Delete the test so we won’t see the failure when we run future tests (you can run all the tests in a directory by
omitting the –singletest parameter:

rm ~/tests/src/GeneralStateTestsFiller/stExample/02_*

2.2.3 Tests that are Supposed to Fail

When a test transaction is supposed to fail, you add an expectException: section to the result. You can see a complete
example in 10_expectExceptionFiller

expect:
- indexes:

data: !!int -1
gas: !!int -1
value: !!int -1

network:
- '>=London'

expectException:
'>=London': TR_FeeCapLessThanBlocks

result: {} # No point checking the result when no transaction happened

You can see the complete list of supported exceptions either in the config file for the client, or in the retesteth source
code.

14 Chapter 2. State Transition Tests

https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/02_failFiller.yml
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/10_expectExceptionFiller.yml
https://github.com/ethereum/retesteth/blob/develop/retesteth/configs/clientconfigs/t8ntool.cpp#L158-L166
https://github.com/ethereum/retesteth/blob/develop/retesteth/configs/clientconfigs/t8ntool.cpp#L158-L166

Ethereum Tests Documentation, Release 0.2

Note that running out of gas is not an exception. Technically speaking a transaction that runs out of gas is successful,
it is just reverted.

2.3 Yul Tests

Yul is a language that is very close to EVM assembler. As such it is a good language for writing tests. You can see a
Yul test at tests/docs/tutorial_samples/09_yulFiller.yml.

This is a sample contract:

cc:
balance: '0x0ba1a9ce0ba1a9ce'
code: |
:yul {

let cellAddr := sub(10,10)

sstore(cellAddr,add(60,9))
}
nonce: 1
storage: {}

It is very similar to an LLL test, except for having the :yul keyword before the opening curly bracket ({).

Note that you can specify the fork for which you compile the code. This is important because of the PUSH0 opcode,
which cannot be used in tests that need to run on forks prior to Shanghai.

code: |
:yul <fork, such as berlin or shanghai>
{

<code goes here>
}

2.4 Solidity Tests

You can see a solidity test at tests/docs/tutorial_samples/03_solidityFiller.yml. Here are the sections that are new.

Note: The Solidity compiler adds a lot of extra code that handles ABI encoding, ABI decoding, contract constructors,
etc. This makes tracing and debugging a lot harder, which makes Solidity a bad choice for most Ethereum client tests.

This feature is available for tests where it is useful, but LLL or Yul is usually a better choice.

You can have a separate solidity: section for your code. This is useful because Solidity code tends to be longer than
LLL (or Yul) code.

solidity: |
// SPDX-License-Identifier: GPL-3.0

The retesteth docker only includes one version of the Solidity compiler, so it is best not to have a pragma solidity
line.

// RETESTETH_SOLC_EVM_VERSION=<fork, such as london or prague>

2.3. Yul Tests 15

https://docs.soliditylang.org/en/v0.8.6/yul.html
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/09_yulFiller.yml
https://ethereum.org/en/history/
https://www.evm.codes/#5f?fork=shanghai
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/03_solidityFiller.yml

Ethereum Tests Documentation, Release 0.2

Specify the hardfork for the compiler to use. If a test needs to be executed on forks prior to Shanghai, that needs to be
specified because of the PUSH0 opcode added in Shanghai.

contract Test {

Solidity keeps state variables in the storage, starting with location 0. We can use state variables for the results of
operations, and check them in the expect: section

uint256 storageVar = 0xff00ff00ff00ff00;
function val2Storage(uint256 addr, uint256 val) public
{

storageVar = val;

Another possibility is to use the SSTORE opcode directly to write to storage. This is the format to embed assembly
into Solidity.

assembly { sstore(addr, val) }
} // function val2Storage

} // contract Test

To specify a contract’s code you can use :solidity <name of contract>. Alternatively, you can put the solidity code
directly in the account’s code: section if it has pragma solidity (otherwise it is compiled as LLL).

pre:
cc:
balance: '0x0ba1a9ce0ba1a9ce'
code: ':solidity Test'
nonce: '0'
storage: {}

In contrast to LLL, Solidity handles function signatures and parameters for you. Therefore, the transaction data has to
conform to the Application Binary Interface (ABI). You do not have to calculate the data on your own, just start it with
:abi followed by the function signature and then the parameters. These parameters can be bool, uint, single dimension
arrays, and strings.

Note: ABI support is a new feature, and may be buggy. Please report any bugs you encounter in this feature.

transaction:
data:
- :abi val2Storage(uint256,uint256) 5 69
gasLimit:
- '80000000'

The other sections of the test are exactly the same as they are in an LLL test.

2.4.1 ABI values

These are examples of the values that :abi can have.

• :abi baz(uint32,bool) 69 1: Call baz with a 32 bit value (69) and a true boolean value

• :abi bar(bytes3[2]) [“abc”, “def”]: Call bar with a two value array, each value three bytes

• :abi sam(bytes,bool,uint256[]) “dave” 0 [1,2,3]: Call sam with a string (“dave”), a false boolean value, and an
array of three 256 bit numbers.

16 Chapter 2. State Transition Tests

https://ethereum.org/en/history/
https://solidity.readthedocs.io/en/v0.7.0/internals/layout_in_storage.html
https://solidity.readthedocs.io/en/v0.7.0/assembly.html
https://solidity.readthedocs.io/en/v0.7.0/assembly.html
https://solidity.readthedocs.io/en/v0.7.0/abi-spec.html
https://medium.com/@piyopiyo/how-to-get-ethereum-encoded-function-signatures-1449e171c840

Ethereum Tests Documentation, Release 0.2

• :abi f(uint256,uint32[],bytes10,bytes) 0x123 [0x456, 0x789] “1234567890” “Hello, world”: Call f with these
parameters

– An unsigned 256 bit integer

– An array of 32 bit values (it can be any size)

– A string of ten bytes

– A string which could be any size

• :abi g(uint256[][],string[]) [[1,2],[3],[4,5] [“one”,”two”,”three”]: Call g with two parameters, a two dimen-
sional array of uint256 values and an array of strings.

• :abi h(uint256,uint32[],bytes10,bytes) 291 [1110,1929] “1234567890” “Hello, world!”: Call h with a
uint256, an array of uint32 values of unspecified size, ten bytes, and a parameter with an unspecified num-
ber of bytes.

• :abi ff(uint256,address) 324124 “0xcd2a3d9f938e13cd947ec05abc7fe734df8dd826”: Call ff with a uint256
and an address (Ethererum addresses are twenty bytes).

2.5 Multitest Files

It is possible to combine multiple similar tests in one file. Here is an example.

There are two steps to doing that:

• Modify the transaction: section. This section has three subsections that are lists. You can add multiple values
to the data:, gasLimit:, and value:.

For example:

transaction:
data:
- :abi val2Storage(uint256,uint256) 0x10 0x10
- :abi val2Storage(uint256,uint256) 0x11 0x11
- :abi val2Storage(uint256,uint256) 0x11 0x12
- :abi val2Storage(uint256,uint256) 0x11 0x11
gasLimit:
- '80000000'
gasPrice: '1'
nonce: '0'
to: cc
secretKey: "45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8"
value:
- 0

• The expect: section is also a list, and can have multiple values. Just put the indexes to the correct data, gas, and
value values, and have the correct response in the result: section.

For example:

expect:

The indexes are integer values. By default YAML values are strings. The !!int overrides this. These are all the
first values in their lists, so the data is equivalent to the call val2Storage(0x10, 0x10).

2.5. Multitest Files 17

https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/04_multitestFiller.yml

Ethereum Tests Documentation, Release 0.2

- indexes:
data: !!int 0
gas: !!int 0
value: !!int 0

network:
- '>=Istanbul'

result:
cc:
storage:
0: 0x10
0x10: 0x10

This is for the second and fourth items in the data: subsection above. When you have multiple values that
produce the same test results, you can specify data, gas, or value as a list instead of a single index.

- indexes:
data:
- !!int 1
- !!int 3
gas: !!int 0
value: !!int 0

network:
- '>=Istanbul'

result:
cc:
storage:
0: 0x11
0x11: 0x11

2.5.1 Multiple Tests, Same Result

When you have multiple tests that produce the same results, you do not have to list them individually in the expect:
section. There are three other options:

• Range. You can specify a range, such as 4-6, inside the expect.data: list. Remember not to specify !!int, the
range is a string, not an integer.

• Wildcard. If the value is -1 it means “any”. Alternatively, you can just not specify values in the indexes:
section. For example, these sections are equivalent. Each specifies that the result is expected for data value #1
(the second in the list), with any value for gas and value.

expect:
- indexes:
data: !!int 1
gas: !!int -1
value: !!int -1

expect:
- indexes:
data: !!int 1

• Label. You can preface the value with :label <word> <value>:

transaction:
data:
- :label odd :abi f(uint) 1
- :label even :abi f(uint) 2

(continues on next page)

18 Chapter 2. State Transition Tests

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

- :label odd :abi f(uint) 3
- :label even :abi f(uint) 4
- :label odd :abi f(uint) 5
- :label even :abi f(uint) 6
- :label odd :abi f(uint) 7
- :label even :abi f(uint) 8

In the expect.data: list, you specify :label <word> and it applies to every value that has that label.

expect:
- indexes:

data:
- :label odd
- :label even
gas: !!int -1
value: !!int -1

2.6 Conclusion

At this point you should be able to run simple tests that verify the EVM opcodes work as well as more complex
algorithms work as expected. You are, however, limited to a single transaction in a single block. In a next tutorial,
Blockchain Tests, you will learn how to write blockchain tests that can involve multiple blocks, each of which can have
multiple transactions.

2.6. Conclusion 19

Ethereum Tests Documentation, Release 0.2

20 Chapter 2. State Transition Tests

CHAPTER 3

Blockchain Tests

Ori Pomerantz

In this tutorial you learn how to use the skills you learned writing state tests to write blockchain tests. These tests can
include multiple blocks and each of those blocks can include multiple transactions.

3.1 The Environment

Before you start, make sure you create the retesteth tutorial and create the environment explained there. Also make
sure you read and understand the state transition tests tutorial.

3.2 Types of Blockchain Tests

If you go to tests/src/BlockchainTestsFiller you will see three different directories.

• ValidBlocks are tests that only have valid blocks, which the client should accept.

• InvalidBlocks are tests that should raise an exception because they include invalid blocks.

• TransitionTests are tests that verify the transitions between different versions of the Ethereum protocol (called
forks) are handled correctly.

3.3 Valid Block Tests

There is a valid block test in tests/docs/tutorial_samples/05_simpleTxFiller.yml. We copy it to bcExample.

mkdir ~/tests/src/Blo*/Val*/bcExample*
cp ~/tests/docs/tu*/05_* ~/tests/src/Blo*/Val*/bcExample*
cd ~
./dretesteth.sh -t BlockchainTests/ValidBlocks/bcExample -- \

(continues on next page)

21

mailto://qbzzt1@gmail.com
https://medium.com/mycrypto/the-history-of-ethereum-hard-forks-6a6dae76d56f
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/05_simpleTxFiller.yml

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

--testpath ~/tests --datadir /tests/config --filltests \
--singletest 05_simpleTx

3.3.1 Test Source Code

This section explains 05_simpleTxFiller.yml. I am only going to document the things in which it is different from
state transition tests.

State transition tests take their genesis block from the client configuration (or, failing that, from the default client
configuration) in retesteth. In blockchain tests the values may be relevant to the test, so you specify them directly.

genesisBlockHeader:
bloom:

→˓'0x00
→˓'
coinbase: '0x8888f1f195afa192cfee860698584c030f4c9db1'
difficulty: '131072'
extraData: '0x42'
gasLimit: '3141592'
gasUsed: '0'
mixHash: '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'
nonce: '0x0102030405060708'
number: '0'
parentHash: '0x00'
receiptTrie: '0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'
stateRoot: '0xf99eb1626cfa6db435c0836235942d7ccaa935f1ae247d3f1c21e495685f903a'
timestamp: '0x54c98c81'
transactionsTrie:

→˓'0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'
uncleHash: '0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'

In a lot of existing tests you will see a definition for sealEngine. This is related to getting a proof of work as part of
the test. However, this is no longer part of retesteth, so you can omit it or set it to NoProof.

sealEngine: NoProof

Instead of a single transaction, we have a list of blocks. In a YAML list you tell different items apart by the dash
character (-). The block list has two items in it.

blocks:

The first block has one field, transactions, a list of transactions. Every individual transaction is specified with the
same fields used in state transition tests. This block only has one transaction, which transfers 10 Wei.

- transactions:
- data: ''
gasLimit: '50000'
gasPrice: 20

This is the nonce value for the transaction. The first value is the nonce associated with the address in the pre: section.
Each subsequent transaction from the same address increments the nonce.

Alternatively, if you use auto for every transaction of an account, the retesteth tool will provide the nonce values
automatically.

22 Chapter 3. Blockchain Tests

https://arvanaghi.com/blog/explaining-the-genesis-block-in-ethereum/

Ethereum Tests Documentation, Release 0.2

nonce: '0'
secretKey: 45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8
to: 0xde570000de570000de570000de570000de570000
value: '10'

This is the second block. In contrast to the first block, in this one we specify a blockHeader and override some of the
default values.

- blockHeader:
gasLimit: '3141592'

A block can also contain references to uncle blocks (blocks mined at the same time). Note that writing tests with uncle
headers is complicated, because you need to run the test once to get the correct hash value. Only then can you put the
correct value in the test and run it again so it’ll be successful.

uncleHeaders: []

This block has two transactions.

transactions:
- data: ''

gasLimit: '50000'
gasPrice: '20'

This is another transaction from the same address, so the nonce is one more than it was in the previous one.

nonce: '1'
secretKey: 45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8
to: 0xde570000de570000de570000de570000de570000
value: '20'

- data: ''
gasLimit: '50000'
gasPrice: '30'

This transaction comes from a different address (addresses are uniquely derived from the private key, and this one is
different from the one in the previous transaction). This transaction’s nonce value is the initial value for that address,
zero.

nonce: '0'
secretKey: 41f6e321b31e72173f8ff2e292359e1862f24fba42fe6f97efaf641980eff298
to: 0xde570000de570000de570000de570000de570000
value: '30'

3.3.2 Tests using the blockchain random value

Once Ethereum moves to proof of stake (PoS), there will no longer be any need for the block header fields difficulty
and mixHash. When the block header comes from a consensus client, the mixHash is a mostly random value that is
produced by the beacon chain (the validators can each affect a bit on it, so it’s not exactly random). The DIFFICULTY
opcode is no longer relevant either, so it is replaced by an opcode with the same value (0x44) called PREVRANDAO.
You can read more about this topic in EIP-4399.

In block tests we can simulate this value by specifying a mixHash as part of blockHeader. However, the interaction
of mixHash and stateRoot makes this process a bit complicated.

First, you write the test normally, using the block header field mixHash for the random value that in real execution
would come from the consensus layer. Note that mixHash has to be a 32 byte value. Even if most of the bytes are

3.3. Valid Block Tests 23

https://www.investopedia.com/terms/u/uncle-block-cryptocurrency.asp
https://eips.ethereum.org/EIPS/eip-4399

Ethereum Tests Documentation, Release 0.2

zeros, you have to specify them.

When you run the test, it fails on the first block where the state is a function of the random value with an error that
includes these lines:

/retesteth/retesteth/TestOutputHelper.cpp(227): error: in "BlockchainTests/
→˓ValidBlocks/bcStateTests":
Error: Postmine block tweak expected no exception! Client errors with: 'Error
→˓importing raw rlp block: Block from pending block != t8ntool constructed block!
Error in field: stateRoot

.

.

.
parentHash 0x76898c312aea29aa17df32e97399ccdf88e72c544305c9ddc3e76996e35ab951 vs
→˓0x76898c312aea29aa17df32e97399ccdf88e72c544305c9ddc3e76996e35ab951
receiptTrie 0x71043553dd2c4fbc22100a69d47ba3a790f7e428796792c552362b81e6cf5331 vs
→˓0x71043553dd2c4fbc22100a69d47ba3a790f7e428796792c552362b81e6cf5331
stateRoot 0x7a3760ed3aa3e40711b3ecd1cb898a9f37c14cbde7f95b7c5c7af05e6d794864 vs
→˓0x1b5647d3ca49c4b0e9e57e113f85b1be28ac10f0577b6e70c76fb7d767949bf8

In the error there are two separate values of stateRoot. The first, shown in red, is the expected value. The second,
shown in yellow, is the actual value. You need to copy that second value into the block header.

- blockHeader:
mixHash: 0x0102030405060708091011121314151617181920212223242526272829303131
stateRoot: 0x1b5647d3ca49c4b0e9e57e113f85b1be28ac10f0577b6e70c76fb7d767949bf8

If you use the random value also in another block, you repeat the process, once per block.

You can see an example of this type of test here.

Why is this procedure necessary?

Retesteth was written back during the proof of work (PoW) days, when mixHash was a function of the nonce, which
itself was produced from the completed block (including the post-block stateRoot). The way that it fills the block
header is to first get the block processed by the client, read the resulting stateRoot (as well as some other fields). Then
it reverts out of the block and sends it again, this time with the blockHeader fields and the calculated fields from the
client.

This algorithm fails when the state, and therefore stateRoot, is affected by block header fields.

3.4 Invalid Block Tests

The invalid block test is in tests/docs/tutorial_samples/06_invalidBlockFiller.yml We copy it to bcExample.

mkdir ~/tests/src/BlockchainTestsFiller/InvalidBlocks/bcExample
cp ~/tests/docs/tutorial_samples/06_* ~/tests/src/Bl*/In*/bcExample*
cd ~
./dretesteth.sh -t BlockchainTests/InvalidBlocks/bcExample -- \

--testpath ~/tests --datadir /tests/config --filltests \
--singletest 06_invalidBlock

Invalid block tests contain invalid blocks, blocks that cause a client to raise an exception. To tell retesteth which
exception should be raised by a block, we add an expectException field to the blockHeader. In that field we put the
different forks the test supports, and the exception we expect to be raised in them. It is a good idea to have a field that
includes future forks.

24 Chapter 3. Blockchain Tests

https://github.com/ethereum/tests/blob/develop/src/BlockchainTestsFiller/ValidBlocks/bcStateTests/randomFiller.yml
https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/06_invalidBlockFiller.yml

Ethereum Tests Documentation, Release 0.2

- blockHeader:
gasLimit: '30'

expectException:
Berlin: TooMuchGasUsed
'>=London': TooMuchGasUsed

Warning: The expectException field is only used when –filltests is specified. When it is not, retesteth just
expects the processing of the block to fail, without ensuring the exception is the correct one. The reason for this
feature is that not all clients tell us the exact exception type when they reject a block as invalid.

3.4.1 Getting Exception Names

If you don’t know what exception to expect, run the test without an expectException. The output will include an error
message similar to this one:

Error: Postmine block tweak expected no exception! Client errors with:
'Error importing raw rlp block: Invalid gasUsed: header.gasUsed > header.gasLimit'
(bcBlockGasLimitTest/06_invalidBlock_Berlin, fork: Berlin, chain: default, block: 2)

Then took in tests/conf/<name of client>/config and look for the first few words of the error message. For example,
in tests/conf/tn8tool/config we find this line:

"TooMuchGasUsed" : "Invalid gasUsed:",

This tells us that the exception to expect is TooMuchGasUsed.

3.5 Transition Tests

Transition Tests start with one fork, which is used to execute blocks 1-4. Then, typically starting at block 5, it is the
following fork. You can see the list of transition networks here or in . . . /tests/config/t8ntool/config.

In the case of the ArrowGlacier to Merge transition it happens at a specific difficulty, 0x0C0000. At the block difficulty
most tests use, 0x020000, this happens on block 6.

3.6 Conclusion

You should now be able to write most types of Ethereum tests. If you still have questions, you can look in the reference
section or e-mail for help.

3.5. Transition Tests 25

https://github.com/ethereum/retesteth/blob/develop/retesteth/configs/clientconfigs/t8ntool.cpp#L24-L33

Ethereum Tests Documentation, Release 0.2

26 Chapter 3. Blockchain Tests

CHAPTER 4

Ethereum Object Format Tests

Ori Pomerantz

In this tutorial you learn how to write and execute EOF tests. These tests let you check various combinations to see
what is accepted as valid EOF and what is rejected.

Make sure you understand State Transition Tests before you start here.

4.1 Fillers

The fillers for EOF tests are in . . . /src/EOFFiller. This tutorial explains the YML filler,
. . . /src/EOFFiller/efExample/ymlExampleFiller.yml.

4.1.1 Overall Structure

The file includes these sections:

• _info: Human readable comments.

• data: A list of entries. Each entry is init code that can create a contract

• expect: The expected results.

4.1.2 The Data Section

Each entry in the data is typically :raw bytes, because we are checking a data format. However, because EOF is a lot
more complicated than most raw data provided in tests, it is a good idea to use multi-line fields with comments. For
example, this code

- |
:raw
0xEF0001 # Magic and version

(continues on next page)

27

mailto://qbzzt1@gmail.com
state-transition-tutorial.html

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

010004 # One code segment
020001 # One code segment
000a # Code segment zero length: 10 bytes

030016 # Data segment length (the code being deployed): 0x16=22 bytes
00 # End of header

This is functionally equivalent to

- :raw 0xEF0001010004020001000a03001600

But a lot more readable.

4.1.3 The Expect Section

Here is a sample expect section entry.

- indexes:
data:
- 0-1

network:
- '>=Shanghai'
result: !!bool true

It is very similar to the expect section of a state transition test, except for these differences:

• In the indexes subsection there is only data. These tests don’t have gas or value fields to match.

• The result can only be one of two values:

– !!bool true if the contract is supposed to get created

– !!bool false if contract creation is supposed to fail

28 Chapter 4. Ethereum Object Format Tests

CHAPTER 5

Testing EIPs

Ori Pomerantz

In this tutorial you learn how to write tests for a new EIP (after the EIP itself has been implemented on a branch of
geth).

5.1 Environment

The easiest way to do this is to run restetheth in a docker container you build. To be able to isolate problems, it is best
if the docker container includes both the branch geth and the standard one.

1. Get the Dockerfile and the script:

mkdir ~/retestethBuild
cd ~/retestethBuild
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/dretesteth.sh
chmod +x dretesteth.sh
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/Dockerfile

2. Edit Dockerfile:

• In the last line of the string of commands that builds geth, remove the && rm -rf /usr/local/go. We are
going to need to compile geth again in a moment.

RUN cd /geth && apt-get install wget \
&& wget https://dl.google.com/go/go1.18.linux-amd64.tar.gz \
&& tar -xvf go1.18.linux-amd64.tar.gz \
&& mv go /usr/local && ln -s /usr/local/go/bin/go /bin/go \
&& make all && cp /geth/build/bin/evm /bin/evm \
&& cp /geth/build/bin/geth /bin/geth \
&& rm -rf /geth

• Duplicate the geth commands, except for these changes:

29

mailto://qbzzt1@gmail.com
retesteth-tutorial.html#using-the-latest-version

Ethereum Tests Documentation, Release 0.2

– Clone a repository that includes the modified geth (it may be a branch of the main geth
repository, or a different repository altogether).

– Remove the code that installs the Go programming language.

– Change the binaries to evm-eip and geth-eip.

For example, there is a version of geth here with EIP-1153 support. These are the commands to
install and compile it:

RUN git clone --depth 1 https://github.com/snreynolds/go-ethereum /geth
RUN cd /geth && apt-get install wget \

&& make all && cp /geth/build/bin/evm /bin/evm-eip \
&& cp /geth/build/bin/geth /bin/geth-eip \
&& rm -rf /geth && rm -rf /usr/local/go

3. Issue ./dretesteth.sh build.

4. Run at least one test to initialize the tests/config directory.

5. To make life easier, change the ownership of those files:

sudo find tests/config -exec chown `whoami` {} \;

6. Copy the t8ntool configuration to t8ntool-eip:

cd tests/config
cp -R t8ntool/ t8ntool-eip

7. Edit t8ntool-eip/start.sh to use the evm-eip binary:

#!/bin/sh

if [$1 = "-v"]; then
/bin/evm-eip -v

else
stateProvided=0
for index in ${1} ${2} ${3} ${4} ${5} ${6} ${7} ${8} ${9} ${10} ${11} ${12} $

→˓{13} ${14} ${15} ${16} ${17} $
if [$index = "--input.alloc"]; then

stateProvided=1
break

fi
done
if [$stateProvided -eq 1]; then

/bin/evm-eip t8n ${1} ${2} ${3} ${4} ${5} ${6} ${7} ${8} ${9} ${10} ${11}
→˓${12} ${13} ${14} ${15} ${16$

else
/bin/evm-eip t9n ${1} ${2} ${3} ${4} ${5} ${6} ${7} ${8} ${9} ${10} ${11}

→˓${12} ${13} ${14} ${15} ${16$
fi

fi

8. Use –clients t8ntool-eip to run tests with the modified geth.

30 Chapter 5. Testing EIPs

https://github.com/snreynolds/go-ethereum

Ethereum Tests Documentation, Release 0.2

5.2 Test Cases

Most EIPs include multiple test cases, some valid, some not. In most cases you’ll be able to write either state tests or
block tests to verify the functionality.

5.3 Testing new Opcodes

The Yul programming language supports verbatim opcodes. See here for an example of using verbatim (written before
the BASEFEE opcode was supported by Yul).

5.4 Conclusion

At this point you should know enough to test whether geth implements an EIP correctly or not.

5.2. Test Cases 31

https://docs.soliditylang.org/en/v0.8.15/yul.html
https://docs.soliditylang.org/en/v0.8.15/yul.html#verbatim
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stEIP1559/baseFeeDiffPlacesFiller.yml#L39
https://www.evm.codes/#48

Ethereum Tests Documentation, Release 0.2

32 Chapter 5. Testing EIPs

CHAPTER 6

Blocktests with Ommer / Uncle Blocks

Ori Pomerantz

In this tutorial you learn how to write blockchain tests where the chain includes ommer/uncle blocks, blocks that are
not part of the main chain but still deserve a reward.

6.1 Uncle Blocks

Uncle blocks are created because there are multiple miners working at any point in time. If two miners propose a
follow-up block for the chain, only one of them becomes the real block, but the other miner who did the same work
also deserves a reward (otherwise the chances of getting a mining reward will be too low, and there will be a lot less
miners to keep the blockchain going).

33

mailto://qbzzt1@gmail.com
https://ethereum.org/en/glossary/#ommer

Ethereum Tests Documentation, Release 0.2

For example, in the illustration above block #1 was proposed by a miner and accepted. Then two separate miners
created followup blocks labeled as 2. One of them is the block that was eventually accepted, the green 2. The other
one is the orange block that was eventually rejected. Then a miner (one of the ones above or a separate one) created
block 3 and specified that the green 2 is the parent block and the orange 2 is an uncle / ommer block (ommer is a
gender neutral term for an uncle or aunt). This way the miner that created the green 2 block gets the full reward (2
ETH), but the one who created the orange 2 still gets something (1.75 ETH in this case).

6.2 Writing Tests

The test writing process for ommer tests is a bit complicated. First you write a test file such as 11_ommerFiller.yml,
which has the uncle information, and run the test. However, this test always fails. The state root that is calculated by
retesteth in the uncle block is different from the actual state root, because it does not include the payment to the miner
of the uncle block.

6.2.1 Writing the Filler File

The only fields of the uncle block that matter are in the header, so you don’t specify them in the filler file as blocks,
but as a list of uncle block headers. For example, here is block 4 from 11_ommerFiller.yml.

- blocknumber: 4
transactions: []

(continues on next page)

34 Chapter 6. Blocktests with Ommer / Uncle Blocks

https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/11_ommerFiller.yml/

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

uncleHeaders:
- populateFromBlock: 1

extraData: 0x43
coinbase: 0xCC

- populateFromBlock: 2
extraData: 0x43
coinbase: 0xBB

As you can see, the uncleHeaders list contains two uncles. The first is an attempt to continue block 1, so it is an
alternative block 2. The second is an attempt to continue block 2, so it is an alternative block 3.

Note: Most of the header fields are copied from the parent, except for the ones we explicitly specify (in this case,
extraData and coinbase).

6.2.2 Correcting the State Root

When you run this test it is guaranteed to fail. The reason is that the state root that retesteth calculates is wrong,
because it ignores the payments to the miners that created the uncles (in this case, 0xCC. . . CC and 0xBB. . . BB) So
you can expect an error message similar to this:

As you can see, the field that is different is stateRoot (and hash, which is the hash of everything so if there are any
differences it ends up different too). When you put that field in the block header with the correct value the test works,
as you can see by running 12_ommerGoodFiller.yml.

6.2. Writing Tests 35

https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/12_ommerGoodFiller.yml/

Ethereum Tests Documentation, Release 0.2

6.3 Conclusion

The main case in which new ommer tests are needed is when the block header is modified and we need to make sure
that only valid block headers are accepted, not just in the main chain but also as ommers. Here is an example of such
a test. Hopefully you now know enough to write this kind of test.

36 Chapter 6. Blocktests with Ommer / Uncle Blocks

https://github.com/ethereum/tests/blob/develop/src/BlockchainTestsFiller/TransitionTests/bcBerlinToLondon/londonUnclesFiller.json
https://github.com/ethereum/tests/blob/develop/src/BlockchainTestsFiller/TransitionTests/bcBerlinToLondon/londonUnclesFiller.json

CHAPTER 7

Test Internals

Ori Pomerantz

In this tutorial you learn more about the internal representation of Ethereum tests and how to run them with additional
details. In theory you could write any test you want without understanding these details, but they are useful for
debugging.

7.1 Compiled Tests

By default the compiled version of tests/src/<test type>Filler/<directory>/<test>Filler goes in tests/<test
type>/<directory><test>.json. For example, after we copy tests/doc/tutorial_samples/01_add22.yml
to tests/src/GeneralStateTests/stExample/01_add22.yml and compile it, it is available at
tests/GeneralStateTests/stExample/01_add22.json. Here it is with explanations:

{
"01_add22" : {

The _info: section includes any comments you put in the source code of the test, as well as information about the files
used to generate the test (the test source code, the evm compiler if any, the client software used to fill in the data, and
the tool that actually compiled the test).

"_info" : {
"comment" : "You can put a comment here",
"filling-rpc-server" : "Geth-1.9.20-unstable-54add425-20200814",
"filling-tool-version" : "retesteth-0.0.8-docker+commit.96775cc7.Linux.g++",
"lllcversion" : "Version: 0.5.14-develop.2020.8.15+commit.9189ad7a.Linux.g++",
"source" : "src/GeneralStateTestsFiller/stExample/01_add22Filler.yml",
"sourceHash" : "6b5a88627d0b69c7f61fb05f35ac3f14066d2f4bbe248aa08c3091d7534744d8"

},

The env: and transaction: sections contain the information provided in the source code.

37

mailto://qbzzt1@gmail.com

Ethereum Tests Documentation, Release 0.2

"env" : {
...
},

"transaction" : {
...
},

The pre: section contains mostly information from the source file, but any code provided source (either LLL or
Solidity) is compiled.

"pre" : {
"0x095e7baea6a6c7c4c2dfeb977efac326af552d87" : {

"balance" : "0x0ba1a9ce0ba1a9ce",
"code" : "0x600260020160005500",
"nonce" : "0x00",
"storage" : {
}

},
"0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b" : {

...
}

},

The post: section is the situation after the test is run. This could be different for different versions of the Ethereum
protocol, so there is a value for every version that was checked. In this case, the only one is Istanbul.

"post" : {
"Istanbul" : [

{
"indexes" : {

"data" : 0,
"gas" : 0,
"value" : 0

},

Instead of keeping the entire content of the storage and logs that are expected, it is enough to just store hashes of them.

"hash" :
→˓"0x884b8640efb63506c2f8c2d9514335b678815e1ed362107628cf1cd6edd658c2",

"logs" :
→˓"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"

}
]

}
}

7.2 Virtual Machine Trace

If you are using the geth t8ntool, can use the –vmtrace command line option to get a trace of the virtual machine. For
example, this is the command to get a trace of 01_add22:

./dretesteth.sh -t GeneralStateTests/stExample -- --singletest 01_add22 \
--testpath ~/tests --datadir /tests/config --filltests --vmtrace

38 Chapter 7. Test Internals

https://en.wikipedia.org/wiki/Ethereum#Milestones
https://en.wikipedia.org/wiki/Ethereum#Milestones

Ethereum Tests Documentation, Release 0.2

7.2.1 Normal Virtual Machine Trace

This is the trace produced by the command above:

VMTrace: (stExample/01_add22, fork: Berlin, TrInfo: d: 0, g: 0, v: 0)
Transaction number: 0, hash:
→˓0x4e6549e2276d1bc256b2a56ead2d9705a51a8bf54e3775fbd2e98c91fb0e4494

N OPNAME GASCOST TOTALGAS REMAINGAS ERROR
0 PUSH1 3 0 79978984
1 PUSH1 3 3 79978981
2 ADD 3 6 79978978
3 PUSH1 3 9 79978975
4 SSTORE 20000 12 79978972

SSTORE [0x0] = 0x4
5 STOP 0 20012 79958972

{"stateRoot":"0x54d60243629f67e60925f5a9d6daf5f5ee3d774a728aa10c4ef05b8b20b1e192"}

7.2.2 Raw Virtual Machine Trace

The virtual machine trace above does not include the value of the program counter (PC), the content of the stack, or
the full content of the storage and memory for the account. To get this information you need the raw trace:

./dretesteth.sh -t GeneralStateTests/stExample -- --singletest 01_add22 \
--testpath ~/tests --datadir /tests/config --filltests --vmtraceraw | more

The program creates this trace:

VMTrace: (stExample/01_add22, fork: Istanbul, TrInfo: d: 0, g: 0, v: 0)
Transaction number: 0, hash:
→˓0x4e6549e2276d1bc256b2a56ead2d9705a51a8bf54e3775fbd2e98c91fb0e4494

This is the status before the first operation. For the sake of clarity I passed it through a JSON formatter.

{

The program counter starts at zero. The opcode at that point is 96, or in hexadecimal 0x60. Looking at the opcode
table, this operation pushes a one byte value on the stack.

"pc":0,
"op":96,

The amount of gas that is currently available, and the cost of this opcode

"gas":"0x4c461e8",
"gasCost":"0x3",

Current short term (not to be stored as part of the blockchain) values: RAM, the computation stack, and the return
locations stack.

"memory":"0x",
"memSize":0,
"stack":[

],

(continues on next page)

7.2. Virtual Machine Trace 39

https://jsonformatter.curiousconcept.com/
https://github.com/crytic/evm-opcodes
https://github.com/crytic/evm-opcodes

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"returnStack":[

],
"returnData":null,

The depth of the contract call. The contract called directly by the transaction is depth one. If that contract calls code
in a different contract, that code will run with depth two, etc.

"depth":1,

Contracts get a refund for releasing storage they no longer need by setting it to zero). This is the amount of the refund.

"refund":0,

The name of the opcode (corresponding to the op value above).

"opName":"PUSH1",

The error, if any.

"error":""
}

The second operation is almost identical to the first. The differences are:

• The program counter is two, after running an opcode with two bytes (the opcode itself and the value being
pushed)

• The gas counter is lower by three (the cost of the previous operation)

• The stack, rather than empty, has a single value: 0x2.

{"pc":2,"op":96,"gas":"0x4c461e5","gasCost":"0x3","memory":"0x","memSize":0,"stack":[
→˓"0x2"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"PUSH1",
→˓"error":""}

Now the evm adds the two top values (turning a stack of [“0x2”, “0x2”] into [“0x4”]) and then pushes the value zero.

{"pc":4,"op":1,"gas":"0x4c461e2","gasCost":"0x3","memory":"0x","memSize":0,"stack":[
→˓"0x2","0x2"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"ADD",
→˓"error":""}
{"pc":5,"op":96,"gas":"0x4c461df","gasCost":"0x3","memory":"0x","memSize":0,"stack":[
→˓"0x4"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"PUSH1",
→˓"error":""}

Now we store the value at the second place in the stack at the location in the first place. This is writing to the state, so
it is an expensive operation, costing twenty thousand gas.

{"pc":7,"op":85,"gas":"0x4c461dc","gasCost":"0x4e20","memory":"0x","memSize":0,"stack
→˓":["0x4","0x0"],"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":
→˓"SSTORE","error":""}

Finally, stop the evm. The final line gives the output return value, the amount of gas used, and how long it took to run
the program.

{"pc":8,"op":0,"gas":"0x4c413bc","gasCost":"0x0","memory":"0x","memSize":0,"stack":[],
→˓"returnStack":[],"returnData":null,"depth":1,"refund":0,"opName":"STOP","error":""}
{"output":"","gasUsed":"0x4e2c","time":527368}

40 Chapter 7. Test Internals

https://media.consensys.net/ethereum-gas-fuel-and-fees-3333e17fe1dc#:~:text=Gas%20refund

Ethereum Tests Documentation, Release 0.2

7.3 Conclusion

At this point you should be able to write and debug Ethereum tests.

7.3. Conclusion 41

Ethereum Tests Documentation, Release 0.2

42 Chapter 7. Test Internals

CHAPTER 8

How to Contribute Tests

Ori Pomerantz

You’ve written a useful test and now you want to contribute it to the repository. This tutorial teaches you how to do it.

8.1 Generalizing Tests

Many of our tests started from the need to test a single scenario, but we figured out related scenarios that are also worth
testing. For example, this test started from a request to make a CREATE2 opcode fail at a specific stage.

However, there were two ways to generalize this:

• There are multiple opcodes that are probably implemented with a number of steps, each of which may have a
gas cost.

• Why fail only at one step? If we run the operation with different amounts of gas, we can probably trigger failures
at each step.

While the state test transaction can only have one direct destination, we can provide whatever data we want, and that
data can be used to calculate an address to call. Different addresses can contain contracts with different operations.

The easiest way to run multiple tests in a state test is to use different data values. You can use the :abi encoding to
send multiple values. If you use uint, the first value will be available at $4 (LLL) or calldata(4) (Yul), the second
value at $36 / calldata(0x24), etc.

8.2 Files

The source/filler test file is written in either YML or JSON and located under the src directory. This is the type of file
explained in the tutorials.

In addition to the source file, your pull request needs to include the generated/filled version(s) of the test file. This
version includes additional information, such as merkle tree roots of the current state, the compiled bytecode, etc.

43

mailto://qbzzt1@gmail.com
https://github.com/ethereum/tests
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml
https://github.com/ethereum/tests/issues/909
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L200-L216
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L182-L185
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L179
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L179
https://github.com/ethereum/tests/blob/develop/src/GeneralStateTestsFiller/stBadOpcode/operationDiffGasFiller.yml#L26-L161
state-transition-tutorial.html#multitest-files
state-transition-tutorial.html#the-source-code
internals-tutorial.html#compiled-tests
https://en.wikipedia.org/wiki/Merkle_tree

Ethereum Tests Documentation, Release 0.2

Note: The directions below assume you are running retesteth through docker. See here if you are not familiar with
using **retesteth** that way.

8.2.1 State Tests

State tests have their source at src/GeneralStateTestsFiller/<directory>/<test>Filler.<yml or json>. Every state test
is supposed to have two filled versions:

1. Filled state test, which is located in GeneralStateTests/<directory>/<test>.json. You use a command similar
to this one to create this file:

./dretesteth.sh -t $suite -- --testpath $dir --singletest $test --filltests

2. Blockchain state test, which is located in BlockchainTests/GeneralStateTests/<directory>/<test>.json. You
use a command similar to this one to create this file:

./dretesteth.sh -t $suite -- --testpath $dir --singletest $test --fillchain

8.2.2 Blockchain Tests

State tests have their source at src/BlockchainTestsFiller/<directory>/<test>Filler.<yml or json>. These tests only
have a single filled version, located in BlockchainTests/<directory>/<test>.json. You use a command similar to this
one to create this file:

./dretesteth.sh -t $suite -- --testpath $dir --singletest $test --filltests

8.3 Conclusion

At this point you should know enough to submit PRs with useful tests. Go write some and amaze us.

44 Chapter 8. How to Contribute Tests

retesteth-tutorial.html#retesteth-in-a-docker-container
retesteth-tutorial.html#retesteth-in-a-docker-container

CHAPTER 9

Adding Transition Tool Support to your Execution Layer Client

Ori Pomerantz

Note: This document is a tutorial. For reference on the t8ntool options look here.

9.1 Why Do This?

Typically you would add transition tools (t8ntool) support to a client to run the state transition and blockchain tests
from the standard repository using the retesteth tool.

9.2 Configuration

The easiest way to configure a new t8ntool client is to start by duplicating the old one.

1. Run these commands (as root if necessary)

cd tests/config
cp -r t8ntool t8ntool2

2. Edit tests/config/t8ntool2/start.sh. You need two changes:

• Change /bin/evm t8n and /bin/evm t9n to call your own executable.

• If you need any outputs to help with debugging, add them to a log file

echo t8ntool $* > /tests/t8ntool.log

3. Add your client to the docker image. To do that:

1. Recreate the docker container.

45

mailto://qbzzt1@gmail.com
https://ethereum-tests.readthedocs.io/en/latest/retesteth-ref.html
https://github.com/ethereum/tests
./retesteth-tutorial.html
https://ethereum-tests.readthedocs.io/en/latest/retesteth-tutorial.html#using-the-latest-version

Ethereum Tests Documentation, Release 0.2

2. When you get to step 3, add the lines to download and compile your own client.

4. Run retestheth with –clients t8ntool2 to use your client.

9.3 Command line parameters

If t8ntool is called with -v:

• This is the only parameter

• You are supposed to respond with a one line string that identifies the client

• This string goes into <test>._info.filling-rpc-server in the filled test files.

Otherwise, you are supposed to run an actal test (or part of one). In that case your parameters depends on the exact
test type.

9.3.1 Transaction tests

You can recognize these tests by the fact that there is no –input.alloc field provided.

The command line looks like this:

start.sh --input.txs /dev/shm/e79d0f66-4c95-4c23-bed3-3593126d4c3d/tx.rlp --state.
→˓fork Merged

Here is how you interpret the parameters:

Parameter name Value More details
–input.txs RLP encoded transactions file name see here
–state.fork Fork to check against Istanbul, London, Merged, etc.

9.3.2 State transition tests

The command line looks like this (but all in one line)

start.sh --state.fork Merged
--input.alloc /dev/shm/a12b28a5-e0d2-48c5-9744-6428173af2a5/alloc.json
--input.txs /dev/shm/a12b28a5-e0d2-48c5-9744-6428173af2a5/txs.rlp
--input.env /dev/shm/a12b28a5-e0d2-48c5-9744-6428173af2a5/env.json
--output.basedir /dev/shm/a12b28a5-e0d2-48c5-9744-6428173af2a5
--output.result out.json
--output.alloc outAlloc.json

Optionally, there may be EVM tracing turned on, in which case you get the additional parameters:

--trace
--trace.memory
--trace.returndata

The parameters are:

46 Chapter 9. Adding Transition Tool Support to your Execution Layer Client

./t8ntool-ref.html#transaction-file

Ethereum Tests Documentation, Release 0.2

Parameter name Value More details
–input.txs RLP encoded transactions file name transaction files
–state.fork Fork to check against Istanbul, London, Merged, etc.
–input.alloc Pretest allocation file with the state allocation files
–input.txs Transactions file same as for –input.txs
–input.env Environment file
–output.basedir Directory to write output files
–output.result Test output results file
–output.alloc Posttest allocation file with the state same as for –input.alloc
–trace None (a flag)
–trace.memory None (a flag)
–trace.returndata None (a flag)

Traces

If –trace is specified, you need to reate a file (or files) called trace-<transaction number>-<transaction hash>.jsonl.
The format of this file is specified in EIP 3155.

This file should include the content of the memory only if –trace.memory is specified. It should include the content
of the return buffer only if –trace.returndata is specified.

9.3.3 Blockchain tests

Blockchain tests are very similar to state transition tests, with these differences:

• There is an additional parameter, –state.reward, which specifies the block reward. Post merge this value is still
specified, but it is zero.

• The same test could run t8ntool multiple times, once per block.

9.4 Minimal t8ntool client

This is a minimal t8ntool client, written in Python (the retesteth docker image already has Python, and we’d need to
change it to get Node.js). It writes the two files that t8ntool requires, the output file and the output allocations file.
The values it writes are nonsensical, but they pass the minimal requirements.

#! /usr/bin/python

import sys
import shutil

conf = {}

def parseParams(argv):
"""parse the parameters to the script"""
for i in range(len(argv)):

if argv[i][:2] == "--":
conf[argv[i]] = argv[i+1]

parseParams(sys.argv)

(continues on next page)

9.4. Minimal t8ntool client 47

./t8ntool-ref.html#transaction-file
./t8ntool-ref.html#allocation-files
./t8ntool-ref.html#transaction-file
./t8ntool-ref.html#result-file
./t8ntool-ref.html#allocation-files
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-3155.md

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

No change in the blockchain state
shutil.copyfile(conf["--input.alloc"], conf["--output.basedir"] + "/" + conf["--
→˓output.alloc"])

Read the environment
envFile = open(conf["--input.env"])
envJSON = envFile.read()
envFile.close()

Write the output
resFile = open(conf["--output.basedir"] + "/" + conf["--output.result"], "w")
resFile.write("""

{
"currentDifficulty" : "0x020000",
"logsBloom": "0x""" + '01'*256 + """",
"logsHash": "0x0102030405060708091011121314151617181920212223242526272829303132",
"receipts": [],
"receiptsRoot":

→˓"0x0102030405060708091011121314151617181920212223242526272829303132",
"stateRoot": "0x0102030405060708091011121314151617181920212223242526272829303132",
"txRoot": "0x0102030405060708091011121314151617181920212223242526272829303132"

}
""")
resFile.close()

48 Chapter 9. Adding Transition Tool Support to your Execution Layer Client

CHAPTER 10

Custom compiler support

Ori Pomerantz

In this tutorial you learn how to use a custom compiler with retesteth tests. We do this by following the steps to write
and execute a test written in the Huff programming language.

10.1 Why Do This?

Sometimes it is convenient to write a test using a different language than the three supported ones (LLL, Solidity, and
Yul). While such tests are unlikely to be accepted as standard tests, they can help debug client changes.

10.2 Install Huff as part of the Docker

One way to do this is to run restetheth in a docker container you build.

1. Get the Dockerfile and the script:

mkdir ~/retestethBuild
cd ~/retestethBuild
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/dretesteth.sh
chmod +x dretesteth.sh
wget https://raw.githubusercontent.com/ethereum/retesteth/develop/Dockerfile

2. Edit Dockerfile:

• On line 1 change the original image from Ubuntu 18.04 to Ubuntu 20.04. This step is necessary because
the C libraries on Ubuntu 18.04 are too old for the Huff compiler.

FROM ubuntu:20.04 as retesteth

• On the line that downloads the retesteth source from github change the branch from master to develop.

49

mailto://qbzzt1@gmail.com
https://github.com/huff-language/huff-rs
https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
https://docs.soliditylang.org/en/v0.8.15/solidity-by-example.html
https://docs.soliditylang.org/en/v0.8.15/yul.html
retesteth-tutorial.html#using-the-latest-version

Ethereum Tests Documentation, Release 0.2

RUN git clone --depth 1 -b develop https://github.com/ethereum/
→˓retesteth.git /retesteth

• Before the entry point definition add a command to download and configure the Huff compiler.

Huff compiler
RUN curl -L get.huff.sh | bash \

&& ~/.huff/bin/huffup

3. Issue ./dretesteth.sh build.

You will receive these errors. Ignore them, they are merely an artifact of npm and yarn not being installed on
the Docker image.

/root/.huff/bin/huffup: line 18: npm: command not found
huffup: warning: It appears your system has an outdated installation of
→˓huffc via npm.
huffup: warning: Uninstalling huffc with npm to allow huffup to take
→˓precedence...
/root/.huff/bin/huffup: line 21: npm: command not found
/root/.huff/bin/huffup: line 25: yarn: command not found

10.3 Update the client configuration

Custom compiler information is provided as part of the client configuration.

1. Run at least one test to initialize the tests/config directory.

2. To make life easier, change the ownership of those files:

sudo find tests/config -exec chown `whoami` {} \;

3. Copy the t8ntool configuration to t8ntool-huff:

cd tests/config
cp -R t8ntool/ t8ntool-huff

4. Edit tests/config/t8ntool-huff/config to change the customCompilers definition:

"customCompilers" : {
":huff" : "huff.sh"

},

5. Create a file, tests/config/t8ntool-huff/huff.sh, to call the Huff compiler

#!/bin/sh
You can call a custom executable here
The code src comes in argument $1 as a path to a file containing the code
So if you have custom compiler installed in the system the command would look
→˓like:
mycompiler $1

mv $1 $1.huff
code=`~/.huff/bin/huffc $1.huff -r | grep -v Compiling`
echo 0x$code

(continues on next page)

50 Chapter 10. Custom compiler support

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

rm $1.huff

Make sure your tool output clean bytecode only with no log or debug messages
echo "0x600360005500"

10.4 Create a test file that uses Huff

Use this syntax for the code: definition of a contract, such as:

code: |
:huff
#define macro MAIN() = takes(0) returns(0) {

0x01 0x01 add
0x00 sstore
stop

}

The :huff keyword matches the one in tests/config/t8ntool-huff/config, so the retesteth tool knows to call huff.sh. It
is followed by the Huff code.

You can see a sample test here.

10.4. Create a test file that uses Huff 51

https://github.com/ethereum/tests/blob/develop/docs/tutorial_samples/13_huffFiller.yml

Ethereum Tests Documentation, Release 0.2

52 Chapter 10. Custom compiler support

CHAPTER 11

Using Retesteth

11.1 Command Line Options

Note: There has to be a double dash (–) between the -t option that sets the suite and all the other options.

11.1.1 Set The Suite

Option Meaning
-t <TestSuite> Run all the tests in that suite
-t <TestSuite>/<Test Case Folder> Run a specific test case folder (for GeneralStateTests)
-t <TestSuite>/<Test Type>/<Test Case Folder> Run a specific test case folder (for BlockchainTests)

Note: In BlockchainTests there are three possible values for the test type:

• ValidBlocks

• InvalidBlocks

• TransitionTests

53

Ethereum Tests Documentation, Release 0.2

11.1.2 Retesteth Options

Option Meaning
-j <ThreadNumber> Run test execution using threads
–clients client1,
client2

Use following configurations from datadir path (default: ~/.retesteth)

–datadir Path to configs (default: ~/.retesteth)
–nodes List of client tcp ports (“addr:ip, addr:ip”)
–help -h Display list of command arguments
–version -v Display build information
–list Display available test suites
–testfolder Use to create a new test folder inside the suite. Not compatible with using a test case

folder

Note: Setting –nodes overrides the socketAddress section of the config file, documented here.

11.1.3 Setting the Test Suite and Test

Option Meaning
–testpath <PathTo-
TheTestRepo>

Set path to the test repo

–filloutdated Run only those tests that have changed fillers
–testfile <TestFile> Run tests from a file. Requires -t <TestSuite>
–singletest <TestName> Run on a single test. Testname is the filename without Filler.<type> (either json

or yml)
–singletest <Test-
Name>/<Subtest>

Subtest is a test name inside the file.

Note: <Subtest> is only relevant in BlockchainTests. Other test suites do not support files with multiple test names.

11.1.4 Debugging

Option Meaning
-d <index> Set the transaction data array index when running GeneralStateTests
-g <index> Set the transaction gas array index when running GeneralStateTests
-v <index> Set the transaction value array index when running GeneralStateTests
–vmtraceraw [<folder>] Trace transaction execution (see note)
–vmtrace Trace transaction execution, simplified version
–limitblocks <num> Limit the block execution in blockchain tests for debugging to the first <num> blocks
–limitrpc Limit the rpc execution in tests for debug
–verbosity <level> Set logs verbosity. 0 - silent, 1 - only errors, 2 - informative, >2 - detailed
–exectimelog Output execution time for each test suite
–stderr Redirect ipc client stderr to stdout
–travisout Output ‘.‘ to stdout
–statediff State changes between before and after the test

54 Chapter 11. Using Retesteth

https://ethereum-tests.readthedocs.io/en/latest/config-dir.html#socketaddress

Ethereum Tests Documentation, Release 0.2

Note: Normally the –vmtraceraw output goes to standard output. However, you could specify a directory name and
it would get written there (under a different file name for every fork, data value, etc.). If you are using docker that
directory is in the folder, so it is easiest to use a directory such as /tests/results (because /tests on the docker is the
tests repository on a file system outside the docker).

Blockchain test debugging

Blockchain tests contain multiple transactions, so to debug them it is useful to look between transactions.

Option Meaning
–statediff <a>to<c> State changes from just after block a to just after block c. The first block is numbered 1
–statediff
<a>:to<c>:<d>

State changes from just after tx b on block a to just before tx d on block c. The first
transaction in a block is numbered zero.

–poststate <a> The state changes just after block a
–poststate <a>: The state just after tx b on block a
–vmtrace[raw]
<a>:

Trace a specific transaction

Note: You can only view the state in the middle of a block (–statediff –poststate when you use –filltests. Otherwise
only the state at the end of blocks is available.

11.1.5 Additional Tests

Option Meaning
–all Enable all tests

This setting enables the following test suites:

• GeenralStateTests/stTimeConsuming

• GeenralStateTests/stQuadraticComplexityTest

• GeneralStateTests/VMTests/vmPerformance

• BlockchainTests/ValidBlocks/bcExploitTest

• BlockchainTests/ValidBlocks/bcWalletTest

• BlockchainTests/InvalidBlocks/bcExpectSection

11.1. Command Line Options 55

https://github.com/ethereum/tests/tree/develop/src/GeneralStateTestsFiller/stTimeConsuming
https://github.com/ethereum/tests/tree/develop/src/GeneralStateTestsFiller/stQuadraticComplexityTest
https://github.com/ethereum/tests/tree/develop/src/GeneralStateTestsFiller/VMTests/vmPerformance
https://github.com/ethereum/tests/tree/develop/src/BlockchainTestsFiller/ValidBlocks/bcExploitTest
https://github.com/ethereum/tests/tree/develop/src/BlockchainTestsFiller/ValidBlocks/bcWalletTest
https://github.com/ethereum/tests/tree/develop/src/BlockchainTestsFiller/InvalidBlocks/bcExpectSection

Ethereum Tests Documentation, Release 0.2

11.1.6 Test Generation

Option Meaning
–filltests Run test fillers
–fillchain When filling the state tests, fill tests as blockchain instead
–showhash Show filler hash debug information
–poststate
[<folder>]

Show post state hash or fullstate Normally goes to output, but if a folder is specified written to that
folder. If you use Docker, those are on the image, so it’s best to use /test/. . . .

–fullstate Do not compress large states to hash

Note: Normally the –poststate output goes to standard output. However, you could specify a directory name and
it would get written there (under a different file name for every fork, data value, etc.). If you are using docker that
directory is in the folder, so it is easiest to use a directory such as /tests/results (because /tests on the docker is the
tests repository on a file system outside the docker).

11.2 Examples

These examples assume you configured your environment the way it was shown in the tutorial and that you are in your
home directory. If you used different directories, or did not use docker, the commands will be slightly different.

1. Run state tests:

./dretesteth.sh -t GeneralStateTests -- --testpath ~/tests

Run multiple tests simultaneously:

./dretesteth.sh -t GeneralStateTests -- --testpath ~/tests -j 8

2. Run blockchain tests:

./dretesteth.sh -t BlockchainTests -- --testpath ~/tests

Run only the valid blocks tests:

./dretesteth.sh -t BlockchainTests/ValidBlocks -- --testpath ~/tests

Run only the invalid blocks tests:

./dretesteth.sh -t BlockchainTests/InvalidBlocks -- --testpath ~/tests

Run only a specific suite of tests:

./dretesteth.sh -t BlockchainTests/ValidBlocks/bcGasPricerTest \
-- --testpath ~/tests

Run only the tests in a specific file (typically there would only be one):

./dretesteth.sh -t BlockchainTests/ValidBlocks/bcGasPricerTest \
-- --testpath ~/tests --singletest highGasUsage

Run a specific test from a specific file:

56 Chapter 11. Using Retesteth

https://ethereum-tests.readthedocs.io/en/latest/retesteth-tutorial.html

Ethereum Tests Documentation, Release 0.2

./dretesteth.sh -t BlockchainTests/InvalidBlocks/bcForgedTest \
-- --testpath ~/tests \
--singletest bcBlockRLPAsList/BLOCK_difficulty_GivenAsList_Byzantium

3. Run transition tests (tests that verify the transition from one fork to the next is implemented correctly):

./dretesteth.sh -t BlockchainTests/TransitionTests -- --testpath ~/tests

Run the tests for a specific transition (in this case Byzantium to ConstantinopleFix):

./dretesteth.sh -t \
BlockchainTests/TransitionTests/bcByzantiumToConstantinopleFix -- \
--testpath ~/tests

Note: Not all transitions have associated test cases. To see which test cases are available, run:

ls tests/BlockchainTests/TransitionTests

4. Run a test from your own file:

./dretesteth.sh -t GeneralStateTests -- --testpath ~/tests \
--testfile tests/GeneralStateTests/stExample/add11.json

Note: In this case the test is part of the test suite and there are easier ways to run it. However, you can use
–testfile for files that are located elsewhere. You can mount any directory inside the docker (using –testpath),
and it will appear in the docker as /tests.

5. Fill tests. So far all of the examples have been using the generated, filled test files. However, you can also use
the test source code (a.k.a. the filler version).

Fill (and run) a test that is part of the test suite (in this case, tests/GeneralStateTests/stExample/add11, whose
source code is tests/src/GeneralStateTestsFiller/stExample/add11Filler.json):

./dretesteth.sh -t GeneralStateTests/stExample -- \
--testpath ~/tests --singletest add11 --filltests

Combine this option with –testfile to fill and run your own tests:

./dretesteth.sh -t GeneralStateTests -- --testpath ~ --filltests \
--testfile tests/tests/docs/tutorial_samples/01_add22Filler.yml

6. Run a test on a specific network (fork, such as Istanbul or Berlin):

./dretesteth.sh -t BlockchainTests/ValidBlocks/bcStateTests -- \
--testpath ~/tests --singletest simpleSuicide --filltests \
--singlenet Berlin

Note: The generated files usually contain tests for the current fork. If you want to test a different fork, as we
do here, it may be necessary to use –filltests.

7. Run a single test from a multitest file. The actual values come from the test file, the parameters you specify (-d,
-g, and -v) are indexes into their respective lists (data, gas, and transaction value):

11.2. Examples 57

https://ethereum-tests.readthedocs.io/en/latest/state-transition-tutorial.html#multitest-files

Ethereum Tests Documentation, Release 0.2

./dretesteth.sh -t GeneralStateTests -- --testpath ~/tests --filltests \
--testfile /tests/docs/tutorial_samples/04_multitestFiller.yml -d 1

8. Run a test and produce a trace of the Ethererum Virtual Machine::

./dretesteth.sh -t GeneralStateTests/stExample -- \
--testpath ~/tests --vmtrace

Produce a more detailed, but less readable, trace:

./dretesteth.sh -t GeneralStateTests/stExample -- \
--testpath ~/tests --vmtraceraw

9. Run a test and dump the state (accounts balances, storage, etc.) at the end of it:

./dretesteth.sh -t GeneralStateTests/stExample -- --testpath ~/tests --poststate

58 Chapter 11. Using Retesteth

https://ethereum-tests.readthedocs.io/en/latest/internals-tutorial.html#virtual-machine-trace

CHAPTER 12

The Retesteth Config Directory

The retesteth config directory contains the retesteth configuration. If it is empty retesteth creates one with the default
values. Every directory under it contains either the default configuration, or configuration for a specific client (to
override the default for that client).

These directories can contain this information:

• config this file contains the client configuration, a JSON file with these parameters:

– name, the name of the client

– socketType, the type of socket used to communicate with the client. There are four supported types: tcp,
ipc, ipc-debug, and transition-tool. The first three are self explanatory. The transition-tool “socket” is
used by t8ntool, which runs a separate instance of evm t8n for each test.

You can find more information about the communication between retesteth and clients in the t8ntool
tutorial.

• socketAddress, the address of the socket, either a list of TCP ports (in the format <ip>:<port>), a file for IPC,
or an executable to run (for transition-tool).

• customCompilers, definitions for custom compilers. You can find more information about using custom com-
pilers in the tutorial.

• initializeTime, the time to wait for the client to initialize before sending it tests.

• forks, the main supported forks.

• additionalForks, additional forks, which are supported but only if they are specified explicitly.

For example, if a client’s config file specifies:

"forks" : [
"EIP158",
"Byzantium",
"Constantinople",
"ConstantinopleFix",
"Istanbul",
"Berlin"

(continues on next page)

59

t8ntool.html
t8ntool.html
custom-compiler.html

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

],
"additionalForks" : [
"EIP158ToByzantiumAt5",
"HomesteadToDaoAt5",
"ByzantiumToConstantinopleFixAt5"

],

And the test specifies >=Byzantium, it will test these forks:

– Byzantium

– Constantinople

– ConstantinopleFix

– Istanbul

– Berlin

But not additional forks such as ByzantiumToConstantinopleFixAt5.

• exceptions, the exception messages that the client emits for blocks that are invalid in various ways. The key
is the string used to identify the exception in the expectException field of invalid block tests. The value is the
message the client emits.

Note: The exception is only checked if:

1. –filltests is specified.

2. The test is in BlockchainTests/InvalidBlocks.

Otherwise, either retesteth only checks that an exception occurred, not which exception it was (without –
filltests), or treats any exception as an abort (if the test is not for invalid blocks).

• start.sh the meaning of this script varies depending on the method used to communicate with the client.

– With tcp and ipc clients the script starts the client and possibly provides it with the port or pipe on which
it should listen. In both cases it is possible to start multiple clients to run tests in parallel.

Note: If there is no start.sh script at all retesteth assumes that it needs to connect to an existing client
rather than run its own.

– With ipc-debug clients the script is ignored, because it is assumed that the client is already running in
debug mode.

– With transition-tool clients the script is executed for every test, and the program it runs (evm t8n in the
case of geth) communicates with the client to execute the test.

• stop.sh stop the client.

• In the case of transition-tool clients, this directory also contains the script that runs the client for each test. This
script’s name is specified in the socketAddress field.

In the case of t8ntool, at writing the only client that uses the transition-tool socket type, this script is start.sh.

• mycompiler.sh, a sample custom compiler script. You can find more information about using custom com-
pilers in the tutorial.

60 Chapter 12. The Retesteth Config Directory

custom-compiler.html

Ethereum Tests Documentation, Release 0.2

• genesis/<forkname>.json, this is the genesis config for the client, primarily the way to specify for the client
what fork it is running. The forkname value is matched with the value for the network: field in the test file.
This file is necessary because different clients refer to the forks by different names.

This file may also contain an accounts field. This is legacy and can be ignored.

• genesis/correctMiningReward.json, a file that includes the mining reward for each fork.

61

Ethereum Tests Documentation, Release 0.2

62 Chapter 12. The Retesteth Config Directory

CHAPTER 13

Transition Tool

13.1 Command Line Parameters

The command line parameters are used to specify the parameters, input files, and output files.

In the t8ntool client provided with the system, which uses geth, the commands being called are:

• evm t8n For state transition and blockchain tests.

• evm t9n For transaction tests.

However, you can change that by editing the tests/config/t8ntool/start.sh file.

13.1.1 Test Parameters

• –state.fork fork name

• –state.reward block mining reward (appears only in Block tests)

• –trace produce a trace

13.1.2 Input Files

• –input.env full path to environment file

• –input.alloc full path to pretest allocation file with the state

• –input.txs full path to transaction file

State transition and blockchain tests have all three input file parameters. Transaction tests, which only test transaction
parsing, only have the –input.txs parameter.

Note: If you want to specify any of this information in stdin, either omit the parameter or use the value stdin.

63

Ethereum Tests Documentation, Release 0.2

13.1.3 Output Files

• –output.basedir directory to write the output files

• –output.result file name for test output

• –output.alloc file name for post test allocation file

Note: If you want to receive this information into stdout, either omit the parameter or use the value stdout.

13.2 File Structures

Most of the t8ntool files are in JSON format. Any values that are not provided are assumed to be zero or empty, as
applicable.

13.2.1 Transaction File

This file is a single line “0x<rlp encoded transaction><rlp encoded transaction>. . . ”. If there are no transactions,
the line is “0xc0”. This is an input to the tool, which retesteth calls txs.rlp for state transition and blockchain tests and
tx.rlp for transaction tests.

13.2.2 Environment File

This file is a map with the execution environment. This is an input to the tool, which retesteth calls env.json. It has
these fields:

• currentCoinbase

• currentDifficulty

• currentGasLimit

• currentNumber

• currentTimestamp

• previousHash, the hash of the previous (currentNumber-1) block

• blockHashes, a map of historical block numbers and their hashes

Note: Some tests include multiple blocks. In that case, the test software runs t8ntool multiple times, one per block.

Example

{
"currentCoinbase" : "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba",
"currentDifficulty" : "0x020000",
"currentGasLimit" : "0x05f5e100",
"currentNumber" : "0x01",
"currentTimestamp" : "0x03e8",
"previousHash" :

→˓"0xe729de3fec21e30bea3d56adb01ed14bc107273c2775f9355afb10f594a10d9e", (continues on next page)

64 Chapter 13. Transition Tool

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"blockHashes" : {
"0" : "0xe729de3fec21e30bea3d56adb01ed14bc107273c2775f9355afb10f594a10d9e"

}
}

13.2.3 Allocation Files

These files show the state of various accounts and contracts on the blockchain. In retesteth there are two of these files:
alloc.json which is the input state and outAlloc.json which is the output state.

The file is a map of address values to account information. The account information that can be provided is:

• balance

• code (in machine language format)

• nonce

• storage

Example

{
"a94f5374fce5edbc8e2a8697c15331677e6ebf0b": {

"balance": "0x5ffd4878be161d74",
"code": "0x5854505854",
"nonce": "0xac",
"storage": {

"0x00":
"0x0004"

}
},
"0x8a8eafb1cf62bfbeb1741769dae1a9dd47996192":{

"balance": "0xfeedbead",
"nonce" : "0x00"

}
}

13.2.4 Result File

In retesteth this file is called out.json. It is the post state after processing the block. It should include the following
fields:

• stateRoot

• txRoot

• receiptRoot

• logsHash

• logsBloom, the bloom filter for the logs.

• receipts, a list of maps, one for each transaction, with the transaction receipt. Each of those receipts includes
these fields:

– root

13.2. File Structures 65

https://en.wikipedia.org/wiki/Bloom_filter

Ethereum Tests Documentation, Release 0.2

– status

– cumulativeGasUsed

– logsBloom

– logs

– transactionHash

– contractAddress, the address of the created contract, if any

– gasUsed

– blockHash, all zeros because this is created before the block is finished

– transactionIndex

Example

{
"stateRoot": "0x1c99b01120e7a2fa1301b3505f20100e72362e5ac3f96854420e56ba8984d716",
"txRoot": "0xb5eee60b45801179cbde3781b9a5dee9b3111554618c9cda3d6f7e351fd41e0b",
"receiptRoot": "0x86ceb80cb6bef8fe4ac0f1c99409f67cb2554c4432f374e399b94884eb3e6562",
"logsHash": "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
"logsBloom":

→˓"0x00
→˓",
"receipts": [

{
"root": "0x",
"status": "0x1",
"cumulativeGasUsed": "0xa878",
"logsBloom":

→˓"0x00
→˓",

"logs": null,
"transactionHash":

→˓"0x4e6549e2276d1bc256b2a56ead2d9705a51a8bf54e3775fbd2e98c91fb0e4494",
"contractAddress": "0x00",
"gasUsed": "0xa878",
"blockHash":

→˓"0x00",
"transactionIndex": "0x0"

}
]

}

13.2.5 Trace Files

If –trace is specified, the t8ntool creates a file (or files) called trace-<transaction number>-<transaction hash>.jsonl.
The format of this file is specified in EIP 3155.

If the transaction fails and does not produce a hash, the name of the file is still trace-<transaction number>-<value
that is a legitimate hash>.jsonl.

66 Chapter 13. Transition Tool

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-3155.md

Ethereum Tests Documentation, Release 0.2

13.3 Using Standard Input and Output

It should also be possible to run a t8ntool with input coming from stdin and output going to stdout. In this case, the
input is all one object and the output is all one object.

13.3.1 Input

When the input is provided using stdin, it can have any combination of these three fields (whichever ones aren’t
provided in file form)

• txs, a list of transactions

• alloc, a map of the pretest accounts

• env, a map of the execution environment

13.3.2 Output

When the output goes to stdout, it can have any combination of these fields (whichever ones don’t have a specified
output file):

• result, the post state (the blockchain state after processing)

• body, the transactions and their results

13.3. Using Standard Input and Output 67

Ethereum Tests Documentation, Release 0.2

68 Chapter 13. Transition Tool

CHAPTER 14

The RPC Interface

Some clients, such as besu, run tests using this interface. This allows the client to run anywhere there is connectivity
to the system running retesteth.

In addition to requiring some of the standard Ethereum RPC function, retesteth requires some specific functions to
setup and execute tests.

14.1 Retesteth-Specific RPCs

14.1.1 debug_accountRange

Get a list of accounts at a certain point in time.

Parameters

1. string _blockHashOrNumber: The hash or number of the block

2. int _txIndex: Transaction index for the point in which we want the list of accounts

3. string _addressHash: The hash at which to start the list If _maxResults is equal to the number of accounts or
more than that then we receive all the addresses and there is no problem. But if there are too many accounts to
report them all, we receive the next hash at which we can find an address. We then call this method again, with
that value in _addressHash, to get the next batch of addresses.

4. int _maxResults: Maximum number of results

Result

• addressMap: An object with hash values and the addresses they represent. We use the hashes (both here and in
the _addressHash parameter) because that is the order in which addresses are stored in the client, so the easiest
order to for paged retrieval.

69

https://www.hyperledger.org/use/besu
https://ethereum.org/en/developers/docs/apis/json-rpc/#top

Ethereum Tests Documentation, Release 0.2

• nextKey: The next hash (in case there are more addresses to return than _maxResults.

Sample Request

{
"jsonrpc": "2.0",
"method": "debug_accountRange",
"params": [
"1",
1,
"0x0001",
10

],
"id": 9

}

This request came from a state transition test, which means that there is only one block and within it only one transac-
tion.

1. _blockHashOrNumber: The block number, which is one (the only block there is)

2. _txIndex: We want the state after one transaction (the only transaction in the block)

3. _addressHash: This is the first request, so we want to start at the beginning.

4. _maxResults: We want up to ten results.

Sample Result

{
"jsonrpc": "2.0",
"id": 9,
"result": {
"addressMap": {

"0x03601462093b5945d1676df093446790fd31b20e7b12a2e8e5e09d068109616b":
→˓"0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b",

"0x0fbc62ba90dec43ec1d6016f9dd39dc324e967f2a3459a78281d1f4b2ba962a6":
→˓"0x095e7baea6a6c7c4c2dfeb977efac326af552d87",

"0x9d860e7bb7e6b09b87ab7406933ef2980c19d7d0192d8939cf6dc6908a03305f":
→˓"0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba"

},
"nextKey": "0x00"

}
}

• addressMap: Three entries, there are three addresses with meaningful information.

• nextKey: Zero, because there are no more results to return.

14.1.2 debug_storageRangeAt

Get a list of storage values.

70 Chapter 14. The RPC Interface

Ethereum Tests Documentation, Release 0.2

Parameters

1. string _blockHashOrNumber: The hash or number of the block

2. int _txIndex: Transaction index for the point in which we want the list of accounts

3. string _address: Read storage values for this address.

4. string _begin: Start from this hash

5. int _maxResults: Maximum number of results

Result

• storage: An object with hash values, and for each of them the key and value it represents.

• complete: Boolean value, true if this completes the storage entries.

Sample Request

{
"jsonrpc": "2.0",
"method": "debug_storageRangeAt",
"params": [
"1",
1,
"0x095e7baea6a6c7c4c2dfeb977efac326af552d87",
"0x00",
20

],
"id": 17

}

1. string _blockHashOrNumber: One, the only valid value for a state test

2. int _txIndex: One, the only valid value for a state test

3. string _address: An address

4. string _begin: Start from the beginning, zero

5. int _maxResults: Read up to twenty results

Sample Result

{
"jsonrpc": "2.0",
"id": 17,
"result": {
"storage": {

"0x290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563": {
"key": "0x00",
"value": "0x02"

},
"0x8a8c65155279fdd366bbe4502fff15c2162ef3f469afd7533efe047403a26923" : {

"key" : "0x60a7",
"value" : "0x60a7"

(continues on next page)

14.1. Retesteth-Specific RPCs 71

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

}
},
"complete": true

}
}

• storage: An object with two hash values, each of which has the key and value that it represents.

• complete: True, this is the entire storage.

14.1.3 debug_traceTransaction

Get the virtual machine trace of a transaction. Not currently implemented.

14.1.4 test_mineBlocks

Put the existing valid transactions into the current block and finish it, and create a number of blocks after it.

Parameters

1. int _number: The number of blocks to create after the current block.

Result

Boolean value, true if successful

Sample Request

{
"jsonrpc": "2.0",
"method": "test_mineBlocks",
"params": [
1

],
"id": 28

}

Create one additional block

Sample Result

{
"jsonrpc": "2.0",
"id": 28,
"result": true

}

Success

72 Chapter 14. The RPC Interface

Ethereum Tests Documentation, Release 0.2

14.1.5 test_modifyTimestamp

Parameters

1. int _timestamp: The new timestamp

Result

Boolean value, true if successful

Sample Request

{
"jsonrpc": "2.0",
"method": "test_modifyTimestamp",
"params": [
1000

],
"id": 2

}

Change the timestamp to 1000. This value is a Unix timetamp, 1000 second after midnight on January 1st, 1970,
GMT.

Sample Result

{
"jsonrpc": "2.0",
"id": 2,
"result": true

}

Success

14.1.6 test_rewindToBlock

Revert the state of the blockchain to a specific block number. Cancel the blocks after it, which lets us run multiple
tests without having to setup a new genesis block for each one.

Parameters

1. int _block: The number of the last block that is not cancelled. If it is the genesis block, this value is zero.

Result

Boolean value, true if successful

14.1. Retesteth-Specific RPCs 73

https://www.unixtimestamp.com/

Ethereum Tests Documentation, Release 0.2

Sample Request

{
"jsonrpc": "2.0",
"method": "test_rewindToBlock",
"params": [
0

],
"id": 22

}

Rewind all the way to the genesis block.

Sample Result

{
"jsonrpc": "2.0",
"id": 22,
"result": true

}

Success

14.1.7 test_setChainParams

This method tells a client to initialize a test chain to a given state.

Parameters

An object that contains the chain parameters for the test:

• params: Chain parameters: - chainID: The chain identifier. - <fork>ForkBlock: The block in which that fork
starts on this chain.

• accounts: The accounts at the test’s start. This is an object whose keys are the addresses of the accounts. For
each account there are these parameters (all the scalar values are strings with a hexadecimal number in them): -
balance: Balance in wei - code: The EVM code (0x if there is none). - nonce: The nonce for the next transaction
from this address. - storage: An object with keys and their values.

• sealEngine: Currently always NoReward.

• genesis: The parameters of the genesis block.

Result

Boolean value, true if successful

Sample Request

74 Chapter 14. The RPC Interface

Ethereum Tests Documentation, Release 0.2

{
"jsonrpc": "2.0",
"method": "test_setChainParams",
"params": [
{

"params": {
"homesteadForkBlock": "0x00",
"EIP150ForkBlock": "0x00",
"EIP158ForkBlock": "0x00",
"byzantiumForkBlock": "0x00",
"constantinopleForkBlock": "0x00",
"constantinopleFixForkBlock": "0x00",
"istanbulForkBlock": "0x00",
"berlinForkBlock": "0x00",
"chainID": "0x01"

},
"accounts": {

"0x095e7baea6a6c7c4c2dfeb977efac326af552d87": {
"balance": "0x0de0b6b3a7640000",
"code": "0x600160010160005500",
"nonce": "0x00",
"storage": {}

},
"0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba": {
"balance": "0x00",
"code": "0x",
"nonce": "0x01",
"storage": {}

},
"0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b": {
"balance": "0x0de0b6b3a7640000",
"code": "0x",
"nonce": "0x00",
"storage": {}

}
},
"sealEngine": "NoReward",
"genesis": {

"author": "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba",
"difficulty": "0x020000",
"gasLimit": "0xff112233445566",
"extraData": "0x00",
"timestamp": "0x00",
"nonce": "0x0000000000000000",
"mixHash": "0x00

→˓"
}

}
],
"id": 1

}

Sample Result

{
"jsonrpc": "2.0",

(continues on next page)

14.1. Retesteth-Specific RPCs 75

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"id": 1,
"result": true

}

Success

14.2 Standard RPCs Retesteth Uses

• eth_blockNumber

• eth_getBalance

• eth_getBlockByNumber

• eth_getCode

• eth_getTransactionCount

• eth_sendRawTransaction

• web3_clientVersion

76 Chapter 14. The RPC Interface

https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_blocknumber
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getbalance
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getblockbynumber
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_getcode
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_gettransactioncount
https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sendrawtransaction
https://ethereum.org/en/developers/docs/apis/json-rpc/#web3_clientversion

CHAPTER 15

Blockchain Tests

15.1 Blockchain Tests Source Code

Location: /src/BlockchainTestsFiller

Blockchain tests can include multiple blocks and each of those blocks can include multiple transactions. These blocks
can be either valid or invalid.

15.1.1 Subfolders

InvalidBlocks Tests containing blocks that are expected to fail on import
ValidBlocks Normal blockchain tests
TransitionTests Blockchain tests with exotic network rules switching forks at block #5

Note: Except for the values in the indexes section, all the field values in the tests’ source code are strings. In YAML
string is the default field type. In JSON string values are enclosed by quotes.

When a value is numeric, such as a value in storage or an address’s balance, it can be specified either in hexademical
(starting with 0x), or in decimal (starting with a digit). For the sake of legibility, numeric values can also have
underscores. For example, you can use 1_000_000_000 for 10^9, which is a lot more readable than 1000000000.

When a numeric field exceeds 256 bits, you can specify it using the syntax 0x:bigint 0x1000. . . .00001.

15.1.2 Test Structure

You can write tests either in JSON format or in YAML format. All tests are inside a structure with their name

77

https://github.com/ethereum/tests/tree/develop/src/BlockchainTestsFiller

Ethereum Tests Documentation, Release 0.2

Format

Format JSON YAML
Filename name-of-testFiller.json name-of-testFiller.yml
Format

{
"name-of-test": {

Sections go here
}

}

name-of-test:
Sections go here

15.1.3 Genesis Block

This section contains the genesis block that starts the chain being tested.

78 Chapter 15. Blockchain Tests

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test": {

<other sections>,
genesisBlockHeader: {

"bloom" : "0x0 <<lots more 0s>>"
"coinbase" :

→˓"0x8888f1f195afa192cfee860698584c030f4c9db1
→˓",

"difficulty" : "0x020000",
"extraData" : "0x42",
"gasLimit" : "0x2fefd8",
"gasUsed" : "0x00",
"mixHash" :

→˓"0x00
→˓",

"nonce" : "0x0000000000000000",
"number" : "0x00",
"parentHash" :

→˓"0x00
→˓",

"receiptTrie" :
→˓"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421
→˓",

"stateRoot" :
→˓"0x14f0692d8daa55f0eb56a1cf1e2b07746d66ddfa3f8bae21fece76d1421b5d47
→˓",

"timestamp" : "0x54c98c81",
"transactionsTrie" :

→˓"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421
→˓",

"uncleHash" :
→˓"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347
→˓"

"baseFeePerGas" : "1000"
}

}
}

name-of-test:
<other sections>
genesisBlockHeader:

bloom: 0x0 <<lots more 0s>>
coinbase:

→˓0x8888f1f195afa192cfee860698584c030f4c9db1
difficulty: 131072
extraData: 0x42
gasLimit: 3141592
gasUsed: 0
mixHash:

→˓0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421
nonce: 0x0102030405060708
number: 0
parentHash:

→˓0x00
receiptTrie:

→˓0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421
stateRoot:

→˓0xf99eb1626cfa6db435c0836235942d7ccaa935f1ae247d3f1c21e495685f903a
timestamp: 0x54c98c81
transactionsTrie:

→˓0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421
uncleHash:

→˓0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347
baseFeePerGas: 1000

15.1. Blockchain Tests Source Code 79

Ethereum Tests Documentation, Release 0.2

Fields

Name in Block Header Sec-
tions

Meaning

bloom bloom filter to speed searches
coinbase beneficiary of mining fee
extraData data added to the block, ignored by retesteth
difficulty (pre-merge) difficulty of previous block
difficulty (post-merge) not used anymore (value zero), identifies a block as pre-merge
gasLimit limit of gas usage per block
gasUsed gas used by this block
mixHash and nonce (pre-merge) used by the proof of work algorithm, ignored by retesteth.
mixHash (post-merge) block random value, has to be 32 bytes (it is not automatically zero padded)
number number of ancestor blocks
parentHash hash of previous block
receiptTrie The root of the receipt trie after this block
stateRoot The root of the state trie after this block
timestamp Unix time
transactionTrie The root of the transaction trie after this block
uncleHash hash of uncle block or blocks
baseFeePerGas The base fee per gas required of transactions (London and later, because of EIP

1559)

You can read more about the block header fields here.

Interaction with The Merge

The transition from proof of work (PoW) to proof of stake (PoS) changes the meaning of some genesis fields.

• difficulty is set to zero for proof of stake genesis blocks. If you try to run a PoS test on an older fork that uses
PoW, the default difficulty is 0x020000.

• mixHash is used for the random value that in production comes from the beacon chain. If this value is specified
in the genesis block, that value is the “random” value until there is a blockheader with mixHash. When that
happens, that mixHash value is the random value until the next block with a mixHash.

15.1.4 Pre

This section contains the initial information of the blockchain.

80 Chapter 15. Blockchain Tests

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Ethash
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e
https://en.wikipedia.org/wiki/Unix_time
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://medium.com/@derao512/ethereum-under-the-hood-part-7-blocks-7f223510ba10

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"pre": {

"address 1": {
"balance": "0xba1a9ce000",
"nonce": "0",
"code": ":raw

→˓0x600160010160005500"
"storage: {

"0": "12345",
"0x12": "0x121212"

},
"address 2": {

<address fields go here>
}

}
}

}

name-of-test:
<other sections>
pre:

address 1:
balance: 0xba1a9ce000,
nonce: 0,
code: :raw 0x600160010160005500
storage:
0: 12345
0x12: 0x121212

address 2:
<address fields go here>

Address Fields

• balance:

Wei balance at the start of the test

• code:

The code of the contract. In the expect: section this has to be raw virtual machine code.

• nonce:

The nonce counter for the address. This value is used to make sure each transaction is processed only once. The
first transaction the address sends has a nonce equal to this value, the second one is the nonce plus one, etc.

• storage:

Values in the storage of the address

JSON YAML

storage: {
"1": 5,
"0x20": 0x10

}

storage:
1: 5
0x20: 0x10

• code:

The code of the contract. There are several possibilities:

– If the account is not a contract, this value is 0x

15.1. Blockchain Tests Source Code 81

https://en.wikipedia.org/wiki/Cryptographic_nonce

Ethereum Tests Documentation, Release 0.2

– Raw virtual machine code. This is for cases where it is impossible to provide source code, or the source
code is in a language retesteth does not recognize, such as Vyper.

:raw 0x600160010160005500

– Lisp Like Language (lll), for example:

{
; Add 2+2 and store the value in storage location 0
[[0]] (ADD 2 2)

}

– Yul, which is documented here, for example:

:yul {
// Add 2+2 and store the value in storage location 0
sstore(0, add(2,2))

}

Optionally, you can specify the hard fork for which to compile the code

:yul berlin {
// Add 2+2 and store the value in storage location 0.
// Because we compile using the Berlin hardfork,
// there is no PUSH0, and we can use the code to check
// forks prior to Shanghai.
sstore(0, add(2,2))

}

– Solidity, which you can learn here. Solidity code can be provided to a test in two ways:

* Put the solidity code itself in the contract definition (same place as the LLL or Yul code).

* Put a :solidity section with the contract source code. In that case, the value in code: is :solidity
<name of contract>.

In either case, you can specify the hardfork to use using this syntax:

// RETESTETH_SOLC_EVM_VERSION=berlin

15.1.5 Blocks

This section contains the blocks of the blockchain that are supposed to modify the state from the one in the pre section
to the one in the expect section.

82 Chapter 15. Blockchain Tests

https://vyper.readthedocs.io/en/stable/
http://blog.syrinx.net/the-resurrection-of-lll-part-1/
https://docs.soliditylang.org/en/v0.8.3/yul.html
https://cryptozombies.io/

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test": {

<other sections>,
blocks: [

{ transactions: [
{ <transaction> },
{ <transaction> }

]
},
{ transactions: [

{ <transaction> },
{ <transaction> }

]
blockHeader: {

"extraData" : "0x42",
"gasLimit" : "0x2fefd8",
"gasUsed" : "0x5208",

},
uncleHeaders: [<values here>]

}
]

}
}

name-of-test:
<other sections>
blocks:
- transactions:

- <transaction>
- <transaction>

- blockHeader:
extraData: 42
gasLimit: 100_000
gasUsed: 2_000

uncleHeaders:
<values here>

transactions:
- <transaction>
- <transaction>

Fields

The fields in each block are optional. Only include those fields you need.

• blockHeader:

This field contains the block header parameters. Parameters that are missing are copied from the genesis block.

15.1. Blockchain Tests Source Code 83

Ethereum Tests Documentation, Release 0.2

Name in Block Header Sec-
tions

Meaning

bloom bloom filter to speed searches
coinbase beneficiary of mining fee
extraData data added to the block, ignored by retesteth
difficulty (pre-merge) difficulty of previous block
difficulty (post-merge) not used anymore (value zero), identifies a block as pre-merge
gasLimit limit of gas usage per block
gasUsed gas used by this block
mixHash and nonce (pre-
merge)

used by the proof of work algorithm, ignored by retesteth.

mixHash (post-merge) block random value, has to be 32 bytes (it is not automatically zero padded)
number number of ancestor blocks
parentHash hash of previous block
receiptTrie The root of the receipt trie after this block
stateRoot The root of the state trie after this block
timestamp Unix time
transactionTrie The root of the transaction trie after this block
uncleHash hash of uncle block or blocks
baseFeePerGas The base fee per gas required of transactions (London and later, because of

EIP 1559)

You can read more about the block header fields here.

One field inside the block header which is not standard in Ethereum is expectException. That field, which is
only used in invalid block tests, identifies the exception we expect to receive for the block on different forks of
Ethereum. You can read more about it in the Invalid Block Tests section of the Blockchain Tests tutorial.

Note that starting with London gasLimit cannot be changed by more than 1/1024 from the previous value
because of EIP 1559. You can specify baseFeePerGas, but the block is only valid if it is the same value that
was calculated from the previous block.

• blocknumber and chainname:

If you are testing behavior in the presence of multiple competing chains, these fields let you specify the chain
and the block’s location within it.

• uncleHeaders:

A list of the uncle blocks (blocks mined at the same time). Each item in the list has two fields:

– chainname: The name of the chain from which the uncle block comes

– populateFromBlock: The block number within that chain for the block that is an uncle of the block you
are specifying.

However, if you write a test with uncles, you need to run it twice, once to get the state hash values to write them
in the test filler file, and again to actually run the test.

• transactions:

A list of transaction objects in the block.

15.1.6 Transaction

This is the data of a transaction. Every block contains a list of transactions

84 Chapter 15. Blockchain Tests

https://en.wikipedia.org/wiki/Bloom_filter
https://en.wikipedia.org/wiki/Ethash
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d
https://medium.com/@eiki1212/ethereum-state-trie-architecture-explained-a30237009d4e
https://en.wikipedia.org/wiki/Unix_time
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://medium.com/@derao512/ethereum-under-the-hood-part-7-blocks-7f223510ba10
../blockchain-tutorial.html#invalid-block-tests
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://www.investopedia.com/terms/u/uncle-block-cryptocurrency.asp

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test":
{

<other sections>
"blocks": [

{
transactions: [
{
data: "0xDA7A",
gasLimit: "0x6a506a50",
gasPrice: 1,
value: 1,
to:

→˓"add13ess01233210add13ess01233210",
secretKey: "5ec13e7 ...

→˓5ec13e7"
nonce: '0x909ce'

},
{
data: "0xDA7A",
accessList: [
{

"address":
→˓"0xcccccccccccccccccccccccccccccccccccccccd
→˓",

"storageKeys": [
→˓"0x1000", "0x60A7"]

},
{

"address":
→˓"0xccccccccccccccccccccccccccccccccccccccce
→˓",

"storageKeys": []
}

],
gasLimit: "0x6a506a50",
maxFeePerGas: 1000,
maxPriorityFeePerGas: 10,
value: 1,
to:

→˓"add13ess01233210add13ess01233210",
secretKey: "5ec13e7 ...

→˓5ec13e7"
nonce: '0x909ce'

},
<other transactions>

]
<other block fields>

},
<other blocks>

]
}

<test-name>:
<other sections>
blocks:
- transactions:

- data: 0xDA7A
gasLimit: '0x6a506a50'
maxFeePerGas: 1000
maxPriorityFeePerGas: 10
value: 1
to:

→˓"add13ess01233210add13ess01233210"
secretKey: "5ec13e7 ... 5ec13e7"
nonce: '0x909ce'

- data: 0xDA7A
accessList:
- address:

→˓0xcccccccccccccccccccccccccccccccccccccccd
storageKeys:
- 0x1000

- address:
→˓0xcc

storageKeys: []
gasLimit: '0x6a506a50'
gasPrice: "1"
value: 1
to:

→˓"add13ess01233210add13ess01233210"
secretKey: "5ec13e7 ... 5ec13e7"
nonce: '0x909ce'

- <another transaction>
<other block fields>

- <another block>

15.1. Blockchain Tests Source Code 85

Ethereum Tests Documentation, Release 0.2

Fields

• data: The data, either in hexadecimal or an ABI call with this format: :abi <function signature> <function
parameters separated by spaces>.

• accessList: An optional EIP2930 access list. The accessList is a list of structures, each of which has to have an
address and a list of storageKeys (which may be empty).

• gasLimit: Gas limit for the transaction

• gasPrice: Gas price in Wei, prior to London (changed by EIP 1559).

• maxFeePerGas: Maximum acceptable gas price in Wei. Available in London and later.

• maxPriorityFeePerGas: Tip to give the miner (per gas, in Wei). The real tip is either this value or
maxFeePerGas-baseFeePerGas (the lower of the two). Available in London and later.

• value: The value the transaction transmits in Wei

• to: The destination address, typically a contract. If you want to submit a create transaction, put an empty string
here (and the data segment is the constructor).

• secretKey: The secret key for the sending address. That address is derived from the secret key and therefore
does not need to be specified explicitely (see here).

• nonce: The nonce value for the transaction. The first transaction for an address has the nonce value of the
address itself, the second transaction has the nonce plus one, etc. Alternatively, if you replace all the nonce
values with auto, the tool does this for you.

• invalid: If the transaction is invalid, meaning clients should reject it, set this value to “1”

• expectException: .. include:: ../test_filler/test_expect_exception.rst

15.1.7 Expect

This section contains the information we expect to see after the test is concluded.

86 Chapter 15. Blockchain Tests

https://solidity.readthedocs.io/en/v0.7.1/abi-spec.html
https://eips.ethereum.org/EIPS/eip-2930
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://www.freecodecamp.org/news/how-to-create-an-ethereum-wallet-address-from-a-private-key-ae72b0eee27b/

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"expect": [

{
"network": ["Istanbul",

→˓<other forks, see below>],
"result": {

"address 1": {
"balance":

→˓"0xba1a9ce000",
"nonce": "0",
"storage: {

"0x0": 12345,
"10" : "0x121212"

},
"code": "0x00"

},
"address 2": {

<address fields go
→˓here>

}
},
{ <forks & results> }

]
}

}

name-of-test:
<other sections>
expect:
- network:

- Istanbul
- <another fork>
result:

address 1:
balance: 0xba1a9ce000,
nonce: 0,
storage:

0x0: 12345
10: 0x121212

code: 0x00
address 2:

<address fields go here>
- <forks & results>

The Network Specification

The string that identifies a fork (version) within a network: list is one of three option:

• The specific version: Istanbul

• The version or anything later: >=Frontier

• Anything up to (but not including) the version <Constantinople

Address Fields

It is not necessary to include all fields for every address. Only include those fields you wish to test.

• balance:

Wei balance at the start of the test

• code:

The code of the contract. In the expect: section this has to be raw virtual machine code.

• nonce:

15.1. Blockchain Tests Source Code 87

Ethereum Tests Documentation, Release 0.2

The nonce counter for the address. This value is used to make sure each transaction is processed only once. The
first transaction the address sends has a nonce equal to this value, the second one is the nonce plus one, etc.

• storage:

Values in the storage of the address

JSON YAML

storage: {
"1": 5,
"0x20": 0x10

}

storage:
1: 5
0x20: 0x10

15.2 Generated Blockchain Tests

Location /BlockchainTests

Subfolders

GeneralStateTests Tests generated in blockchain form from GeneralStateTests
InvalidBlocks Tests containing blocks that are expected to fail on import
ValidBlocks Normal blockchain tests
TransitionTests BC tests with exotic network rules switching forks at block#5

15.2.1 Test Structure

Contains blocks that are to be imported on top of genesisRLP of network fork rules network using sealEngine
NoProof (Ethash no longer supported) and having genesis state as pre.

The result of block import must be state postState or postStateHash if result state is too big. And the last block of
chain with maxTotalDifficulty must be block with hash lastblockhash

Single blockchain test file might contain many tests as there are many test generations for each individual network
fork rules from single test source.

{
"testname": {

"_info" : { ... },
"sealEngine": ["NoProof" | "Ethash"]
"network": "Byzantium",
"pre": { ... },
"genesisBlockHeader": { ... },
"genesisRLP": " ... ",
"blocks" : [...],
"postState": { ... },
"lastblockhash": " ... "

},
"testname": {

"_info" : { ... },
"sealEngine": ["NoProof" | "Ethash"]
"network": "Byzantium",
"pre": { ... },

(continues on next page)

88 Chapter 15. Blockchain Tests

https://en.wikipedia.org/wiki/Cryptographic_nonce
https://github.com/ethereum/tests/tree/develop/BlockchainTests

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"genesisBlockHeader": { ... },
"genesisRLP": " ... ",
"blocks" : [...],
"postStateHash": " ... ",
"lastblockhash": " ... "

}
...

}

15.2.2 Info Section

"_info" : {
"comment" : "A test for (add 1 1) opcode result",
"filling-rpc-server" : "Geth-1.9.14-unstable-8cf83419-20200512",
"filling-tool-version" : "retesteth-0.0.3+commit.672a84dd.Linux.g++",
"lllcversion" : "Version: 0.5.14-develop.2019.11.27+commit.8f259595.Linux.g++

→˓",
"source" : "src/GeneralStateTestsFiller/stExample/add11Filler.json",
"sourceHash" :

→˓"e474fc13b1ea4c60efe2ba925dd48d6f9c1b12317dcd631f5eeeb3722a790a37"
},

Info section is generated with the test and contains information about test and it’s generators.

Fields

comment comment from the test source. (can be edited at source)
filling-rpc-server tool that has been used to generate the test (version)
filling-tool-version the test generator (retesteth) version
lllcversion lllc version that was used to compile LLL code in test fillers
source path to the source filler in the test repository
sourceHash hash of the json of source file (used to track that tests are updated)

15.2.3 Pre/preState Section

"pre" : {
"0x095e7baea6a6c7c4c2dfeb977efac326af552d87" : {

"balance" : "0x0de0b6b3a7640000",
"code" : "0x600160010160005500",
"nonce" : "0x00",
"storage" : {

"0x00" : "0x01"
}

},
"0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b" : {

"balance" : "0x0de0b6b3a7640000",
"code" : "0x",
"nonce" : "0x00",
"storage" : {
}

}
},

15.2. Generated Blockchain Tests 89

Ethereum Tests Documentation, Release 0.2

Pre section describes a full state of accounts used in test.

Its a map of <Account> => <AccountFields>

AccountFields are always complete (balance, code, nonce, storage must present) in this section and can not have a
missing field.

• All values are 0x prefixed hex.

• Empty code defined as 0x.

• Zero storage record defined as 0x00.

Fields

address hash HASH20 is 20 bytes ethereum address 0x prefixed
balance VALUE account balance in evm state
code BYTES account code in evm state
nonce VALUE account nonce in evm state
storage map map of storage records VALUE => VALUE

TYPE Empty Length Format description
VALUE 0x00 Any* 0x prefixed hex up to 32 bytes long with no leading zeros.
BYTES 0x Any* 0x prefixed bytes of any length
HASH8 0x00. . . 00 Fixed 8 0x prefixed bytes of length 8
HASH20 0x00. . . 00 Fixed 20 0x prefixed bytes of length 20
HASH32 0x00. . . 00 Fixed 32 0x prefixed bytes of length 32
HASH256 0x00. . . 00 Fixed 256 0x prefixed bytes of length 256

• Size can be limited by the meaning of field in tests. (like gasLimit ceil, tx signature v - value)

15.2.4 GenesisBlockHeader Section

"genesisRLP" :
→˓"0xf901fcf901f7a000a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347948888f1f195afa192cfee860698584c030f4c9db1a0cafd881ab193703b83816c49ff6c2bf6ba6f464a1be560c42106128c8dbc35e7a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421a056e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421b901008302000080832fefd8808454c98c8142a000880000000000000000c0c0
→˓",
"genesisBlockHeader" :
{

"bloom" :
→˓"0x00
→˓",

"coinbase" : "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba",
"difficulty" : "0x020000",
"extraData" : "0x42",
"gasLimit" : "0x7fffffffffffffff",
"gasUsed" : "0x00",
"hash" : "0xd1b5003dbed66eb89c9b0062798a4fddf737157ef6550187d098d91ae2c3b853",
"mixHash" : "0x00",
"nonce" : "0x0000000000000000",
"number" : "0x00",
"parentHash" : "0x00

→˓",
"receiptTrie" :

→˓"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"stateRoot" : "0x423c3994e5db8348336dd13c498b840988ea7f716a0b876af847c6b8a3446e43

→˓",

(continues on next page)

90 Chapter 15. Blockchain Tests

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"timestamp" : "0x03b6",
"transactionsTrie" :

→˓"0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"uncleHash" : "0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"

}

Genesis blockheader is basically the block header struct of the first block. It is constructed from test_setChainParams
or config files and specify the genesis block header fields. Genesis block hash is later used in the tests. The key
field here is genesisRLP, it contains the block information. genesisBlockHeader exist merely for humans to read the
genesisRLP content. The content of genesisRLP MUST be equal to the one in genesisBlockHeader and is actually
used in testers.

• all fields are 0x prefixed HEX

• 0 values are 0x00 rounded

• empty extraData 0x

Fields

Fields are similar to the standard ethereum block header.

15.2.5 Valid Block Section

{
"chainname" : "default",
"blocknumber" : "1",
"blockHeader" : {

"bloom" :
→˓"0x00
→˓",

"coinbase" : "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba",
"difficulty" : "0x020000",
"extraData" : "0x42",
"gasLimit" : "0x7fffffffffffffff",
"gasUsed" : "0x556d",
"hash" : "0x46a8332db77844422d2550849594af5ae994a23274255fd369d3fbe964eb7cb1",
"mixHash" :

→˓"0x00",
"nonce" : "0x0000000000000000",
"number" : "0x01",
"parentHash" :

→˓"0xd1b5003dbed66eb89c9b0062798a4fddf737157ef6550187d098d91ae2c3b853",
"receiptTrie" :

→˓"0x5fa98a3ba1e25059bf41376c6f9a57b500a02c14c6a87afd1665a3906c4afd51",
"stateRoot" :

→˓"0x6a117466ec6b8dbea3a613366a1b468bdeb6282e0156772c81cc2139caa7c88e",
"timestamp" : "0x03e8",
"transactionsTrie" :

→˓"0x76660905a74ef4a24b19295d8740a349b1170d3298118106201d43cd7886afbf",
"uncleHash" :

→˓"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347"
},
"transactions" : [

{
"data" :

→˓"0x000bc03712fac13c68425054e372b0861af05648614d69d32800fba9ad4522238d4b937a00
→˓", (continues on next page)

15.2. Generated Blockchain Tests 91

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"gasLimit" : "0x030d40",
"gasPrice" : "0x01",
"nonce" : "0x00",
"r" : "0x3d55a2ac293c7ad82632b18705e67ad2a0e6177d44f601dca043934c8cd8c07a

→˓",
"s" : "0x1c069ed47162b350a1f496e9a55f53685189e9c3076a4931334a43719b9a158e

→˓",
"to" : "0x1baf27b88c48dd02b744999cf3522766929d2b2a",
"v" : "0x1c",
"value" : "0x00"

}
],
"uncleHeaders" : [
],
"rlp" :

→˓"0xf902c5f901fca0d1b5003dbed66eb89c9b0062798a4fddf737157ef6550187d098d91ae2c3b853a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347942adc25665018aa1fe0e6bc666dac8fc2697ff9baa06a117466ec6b8dbea3a613366a1b468bdeb6282e0156772c81cc2139caa7c88ea076660905a74ef4a24b19295d8740a349b1170d3298118106201d43cd7886afbfa05fa98a3ba1e25059bf41376c6f9a57b500a02c14c6a87afd1665a3906c4afd51b901008302000001887fffffffffffffff82556d8203e842a000880000000000000000f8c3f8c1800183030d40941baf27b88c48dd02b744999cf3522766929d2b2a80b8600bc03712fac13c68425054e372b0861af05648614d69d32800fba9ad4522238d4b937a001ca03d55a2ac293c7ad82632b18705e67ad2a0e6177d44f601dca043934c8cd8c07aa01c069ed47162b350a1f496e9a55f53685189e9c3076a4931334a43719b9a158ec0
→˓",
}

Contains the block information that is going to be imported into test chain. The key field here is rlp. All testers take
rlp field data and import it on top of genesis that was described in test by genesisRLP

Fields blockHeader, transactions, uncleHeaders describe the content of rlp for humans to read. Its content MUST be
equal to rlp field binary. All testers use rlp field data to import it into the test chain.

Fields chainname, blocknumber are irrelevant for the test client.

• all fields are 0x prefixed HEX

• 0 values are 0x00 rounded

• empty extraData 0x

• transaction creation to is “”

• the transaction

Valid Blocks with Invalid Transactions

"transactionSequence" : [
{

"valid" : "false",
"rawBytes" : "0x02f87001018502540be4008502540be40086246139ca800094cc...
"exception" : "TR_NoFunds"

},
{

"valid" : "true",
"rawBytes" : "0x02f87001018502540be4008502540be40086246139ca800094cc...

}
]

Blocks that include invalid transactions have an additional field, transactionSequence. This field is an array of trans-
action information. Each entry in the array has two fields:

• valid, true for valid transactions (which also appear in the transactions field), false for invalid ones.

• rawBytes, the rlp-encoded raw bytes of the transaction

Entries for invalid transactions have this additional field:

92 Chapter 15. Blockchain Tests

Ethereum Tests Documentation, Release 0.2

• exception, for invalid transactions, the name of the exception they create.

15.2.6 Invalid Block Section

{
"chainname" : "default",
"blocknumber" : "1",
"expectException" : "InvalidDifficulty",
"rlp" :

→˓"0xf902c5f901fca0d1b5003dbed66eb89c9b0062798a4fddf737157ef6550187d098d91ae2c3b853a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347942adc25665018aa1fe0e6bc666dac8fc2697ff9baa06a117466ec6b8dbea3a613366a1b468bdeb6282e0156772c81cc2139caa7c88ea076660905a74ef4a24b19295d8740a349b1170d3298118106201d43cd7886afbfa05fa98a3ba1e25059bf41376c6f9a57b500a02c14c6a87afd1665a3906c4afd51b901008302000001887fffffffffffffff82556d8203e842a000880000000000000000f8c3f8c1800183030d40941baf27b88c48dd02b744999cf3522766929d2b2a80b8600bc03712fac13c68425054e372b0861af05648614d69d32800fba9ad4522238d4b937a001ca03d55a2ac293c7ad82632b18705e67ad2a0e6177d44f601dca043934c8cd8c07aa01c069ed47162b350a1f496e9a55f53685189e9c3076a4931334a43719b9a158ec0
→˓"
}

The block rlp can represent invalid block that is expected to fail upon import. In this case there MUST BE NO
blockHeader, transactions, uncleHeaders fields.

Fields chainname, blocknumber, expectException are irrelevant for the test client.

expectException is index in client’s exception string map defined in retesteth client configs.

Fields

Fields are similar to the standard ethereum block header / transaction

15.2.7 Transaction Section

{
"transaction" : {

"data" : "0x",
"gasLimit" : "0x061a80",
"gasPrice" : "0x01",
"nonce" : "0x00",
"secretKey" :

→˓"0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8",
"to" : "0x095e7baea6a6c7c4c2dfeb977efac326af552d87",
"value" : "0x0186a0"

}
},
{

"transaction" : {
"data" : "0x",
"gasLimit" : "0x061a80",
"gasPrice" : "0x01",
"nonce" : "0x00",
"v" : "0x1c",
"r" : "0x3d55a2ac293c7ad82632b18705e67ad2a0e6177d44f601dca043934c8cd8c07a",
"s" : "0x1c069ed47162b350a1f496e9a55f53685189e9c3076a4931334a43719b9a158e",
"to" : "",
"value" : "0x0186a0"

}
}

Transaction section defines single transaction to be executed in BlockchainTest’s block.

• All fields are 0x prefixed HEX of even length (can be like 0x0122)

• empty data is defined as 0x

15.2. Generated Blockchain Tests 93

Ethereum Tests Documentation, Release 0.2

• transaction creation to defined as “”

Note: Fields r, s are u256 and can be less than 32 bytes!

Note: There is an EIP limiting s max value (source?). From a certain fork transactions with s value > sMaxValue are
considered to be invalid.

Fields

data BYTES data/input code of the transaction
gasLimit VALUE gasLimit of transaction.
gasPrice VALUE Transaction’s gas price
nonce VALUE Transaction’s nonce
secretKey HASH32 SecretKey criptic value used to sign tx data by v,r,s
v VALUE Cryptic value 1 byte in length
r VALUE Values corresponding to the signature of the transaction and used to determine the sender

of the transaction.
s VALUE Values corresponding to the signature of the transaction and used to determine the sender

of the transaction.
to FH20 Transaction’s to destination address. set to "" if creation.
value VALUE Value of the transaction.

TYPE Empty Length Format description
VALUE 0x00 Any* 0x prefixed hex up to 32 bytes long with no leading zeros.
BYTES 0x Any* 0x prefixed bytes of any length
HASH8 0x00. . . 00 Fixed 8 0x prefixed bytes of length 8
HASH20 0x00. . . 00 Fixed 20 0x prefixed bytes of length 20
HASH32 0x00. . . 00 Fixed 32 0x prefixed bytes of length 32
HASH256 0x00. . . 00 Fixed 256 0x prefixed bytes of length 256

• Size can be limited by the meaning of field in tests. (like gasLimit ceil, tx signature v - value)

94 Chapter 15. Blockchain Tests

CHAPTER 16

Ethereum Object Format Tests

16.1 Ethereum Test Format Source Code

Location: src/EOFTestsFiller

16.1.1 Test Structure

You can write tests either in JSON format or in YAML format. All tests are inside a structure with their name

Format

Format JSON YAML
Filename name-of-testFiller.json name-of-testFiller.yml
Format

{
"name-of-test": {

Sections go here
}

}

name-of-test:
Sections go here

16.1.2 Transaction

This is the data to be deployed.

95

https://github.com/ethereum/tests/tree/develop/src/EOFTestsFiller

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"data": [

":raw 0x112200",
":raw 0x223344"

]
}

name-of-test:
<other sections>
data:
- :raw 0xBAD060A7
- |

:raw # or cooked
0xBAD0 # or good

60A7

16.1.3 Expect

This section contains the information we expect to see after the test is concluded.

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"expect": [

{
"indexes": {
"data": [0, "2-3", ":label

→˓foo"],
},
"network": ["Istanbul",

→˓<other forks, see below>],
"result": true

{ <forks & results> }
]

}
}

name-of-test:
<other sections>
expect:
- indexes:

data:
- !!int 0
- 2-3
- :label foo

network:
- Istanbul
- <another fork>
result: !!bool true

- <forks & results>

The Network Specification

The string that identifies a fork (version) within a network: list is one of three option:

• The specific version: Istanbul

• The version or anything later: >=Frontier

• Anything up to (but not including) the version <Constantinople

The Indexes

The data values which are covered by this expect item. Each data value uses one of these formats:

96 Chapter 16. Ethereum Object Format Tests

Ethereum Tests Documentation, Release 0.2

JSON YAML Meaning
-1 !!int -1 All the (data, gas, or value) values in the transaction
<n> !!int <n> The n’th value in the list (counting from zero)
“<a>-” a-b Everthing from the a’th value to the b’th value (counting from zero)
“:label foo” :label foo Any value in the list that is specified as :label foo <value>

The Result

Whether the data should result in a successful contract deployment or not.

JSON YAML Meaning
true !!bool true Successful deployment
false !!bool false Failed deployment

16.2 Generated Ethereum Object Format

Location /EOFTests

16.2.1 Test Structure

Contains vectors, indexed by <test name>_<number within the file>. Inside each vector that is the code being
deployed, and the result for each fork in the test (true or false)

16.2. Generated Ethereum Object Format 97

https://github.com/ethereum/tests/tree/develop/EOFTests

Ethereum Tests Documentation, Release 0.2

98 Chapter 16. Ethereum Object Format Tests

CHAPTER 17

State Transition Tests

17.1 State Transition Tests Source Code

Location: src/GeneralStateTestsFiller

State transition tests include a single transaction that is supposed to change the state of the blockchain from the pre
state to the expect state.

Note: Except for the values in the indexes section, all the field values in the tests’ source code are strings. In YAML
string is the default field type. In JSON string values are enclosed by quotes.

When a value is numeric, such as a value in storage or an address’s balance, it can be specified either in hexademical
(starting with 0x), or in decimal (starting with a digit). For the sake of legibility, numeric values can also have
underscores. For example, you can use 1_000_000_000 for 10^9, which is a lot more readable than 1000000000.

When a numeric field exceeds 256 bits, you can specify it using the syntax 0x:bigint 0x1000. . . .00001.

17.1.1 Test Structure

You can write tests either in JSON format or in YAML format. All tests are inside a structure with their name

99

https://github.com/ethereum/tests/tree/develop/src/GeneralStateTestsFiller

Ethereum Tests Documentation, Release 0.2

Format

Format JSON YAML
Filename name-of-testFiller.json name-of-testFiller.yml
Format

{
"name-of-test": {

Sections go here
}

}

name-of-test:
Sections go here

17.1.2 Env

This section contains the environment, the block just before the one that runs the VM or executes the transaction.

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"env" : {

"currentCoinbase" :
→˓"0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba
→˓",

"currentDifficulty" : "0x020000
→˓",

"currentGasLimit" : "0x05f5e100
→˓",

"currentNumber" : "0x01",
"currentTimestamp" : "0x03e8",
"previousHash" :

→˓"0x5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6
→˓",,

"currentBaseFee" : "1000"
}

}
}

name-of-test:
<other sections>
env:

currentCoinbase:
→˓2adc25665018aa1fe0e6bc666dac8fc2697ff9ba

currentDifficulty: 0x20000
currentGasLimit: 100000000
currentNumber: 1
currentTimestamp: 1000
previousHash:

→˓5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6
currentBaseFee: 1000

Fields

You can read the definition of Ethereum block header fields here.

Note that this section only contains the fields that are relevant to single transaction tests.

100 Chapter 17. State Transition Tests

https://medium.com/@derao512/ethereum-under-the-hood-part-7-blocks-7f223510ba10

Ethereum Tests Documentation, Release 0.2

Name in Env Section Meaning
currentCoinbase beneficiary of mining fee
currentDifficulty difficulty of previous block (pre Merge)
currentRandom random value that is supposed to come from the beacon chain (post Merge)
currentGasLimit limit of gas usage per block
currentNumber number of ancestor blocks
currentTimestamp Unix time
previousHash hash of previous block
currentBaseFee London and afterwards, the block base fee

17.1.3 Pre

This section contains the initial information of the blockchain.

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"pre": {

"address 1": {
"balance": "0xba1a9ce000",
"nonce": "0",
"code": ":raw

→˓0x600160010160005500"
"storage: {

"0": "12345",
"0x12": "0x121212"

},
"address 2": {

<address fields go here>
}

}
}

}

name-of-test:
<other sections>
pre:

address 1:
balance: 0xba1a9ce000,
nonce: 0,
code: :raw 0x600160010160005500
storage:
0: 12345
0x12: 0x121212

address 2:
<address fields go here>

Address Fields

• balance:

Wei balance at the start of the test

• code:

The code of the contract. In the expect: section this has to be raw virtual machine code.

• nonce:

The nonce counter for the address. This value is used to make sure each transaction is processed only once. The
first transaction the address sends has a nonce equal to this value, the second one is the nonce plus one, etc.

17.1. State Transition Tests Source Code 101

https://en.wikipedia.org/wiki/Unix_time
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://en.wikipedia.org/wiki/Cryptographic_nonce

Ethereum Tests Documentation, Release 0.2

• storage:

Values in the storage of the address

JSON YAML

storage: {
"1": 5,
"0x20": 0x10

}

storage:
1: 5
0x20: 0x10

• code:

The code of the contract. There are several possibilities:

– If the account is not a contract, this value is 0x

– Raw virtual machine code. This is for cases where it is impossible to provide source code, or the source
code is in a language retesteth does not recognize, such as Vyper.

:raw 0x600160010160005500

– Lisp Like Language (lll), for example:

{
; Add 2+2 and store the value in storage location 0
[[0]] (ADD 2 2)

}

– Yul, which is documented here, for example:

:yul {
// Add 2+2 and store the value in storage location 0
sstore(0, add(2,2))

}

Optionally, you can specify the hard fork for which to compile the code

:yul berlin {
// Add 2+2 and store the value in storage location 0.
// Because we compile using the Berlin hardfork,
// there is no PUSH0, and we can use the code to check
// forks prior to Shanghai.
sstore(0, add(2,2))

}

– Solidity, which you can learn here. Solidity code can be provided to a test in two ways:

* Put the solidity code itself in the contract definition (same place as the LLL or Yul code).

* Put a :solidity section with the contract source code. In that case, the value in code: is :solidity
<name of contract>.

In either case, you can specify the hardfork to use using this syntax:

// RETESTETH_SOLC_EVM_VERSION=berlin

102 Chapter 17. State Transition Tests

https://vyper.readthedocs.io/en/stable/
http://blog.syrinx.net/the-resurrection-of-lll-part-1/
https://docs.soliditylang.org/en/v0.8.3/yul.html
https://cryptozombies.io/

Ethereum Tests Documentation, Release 0.2

17.1.4 Transaction

This is the data of the transaction.

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"transaction":

{
"data": ["0xDA7A", "0xDA7A",

→˓ ":label hex 0xDA7A",
":abi f(uint) 0xDA7A",
{

"data": "0xDA7A",
"accessList": [

{
"address":

→˓"0x0000000000000000000000000000000000000101
→˓",

"storageKeys
→˓": [0x60A7, 0xBEEF]

},
{

"address":
→˓"0x0000000000000000000000000000000000000102
→˓"

}
]

}
],
"gasLimit": ["0x6a506a50"],
"value": ["1"],
"to":

→˓"add13ess01233210add13ess01233210",
"secretKey": "5ec13e7 ...

→˓5ec13e7"
"nonce": '0x909ce'
"maxPriorityFeePerGas": "10

→˓",
"maxFeePerGas": "2000",

}

name-of-test:
<other sections>
transaction:

data:
- 0xDA7A
- 0xDA7A
- :label hex 0xDA7A
- :abi f(uint) 0xDA7A
- data: :label acl 0xDA7A

accessList:
- address:

→˓0x0000000000000000000000000000000000000101
storageKeys:
- 0x60A7
- 0xBEEF

- address:
→˓0x0000000000000000000000000000000000000102

gasLimit:
- '0xga50ga50'
value:
- "1"
to: "add13ess01233210add13ess01233210

→˓"
secretKey: "5ec13e7 ... 5ec13e7"
nonce: '0x909ce'
maxPriorityFeePerGas: 10
maxFeePerGas: 2000

Fields

• data: The data, either in hexadecimal or an ABI call with this format: :abi <function signature> <function
parameters separated by spaces>. The value can also be labeled: :label <value>. This value is specified as a
list to enable files with multiple tests

The data can also have an EIP2930 access list. In that case the data field itself is a structure with two fields:
data (the data) and accessList. The accessList is a list of structures, each of which has to have an address and

17.1. State Transition Tests Source Code 103

https://solidity.readthedocs.io/en/v0.7.1/abi-spec.html
../state-transition-tutorial.html#multitest-files
https://eips.ethereum.org/EIPS/eip-2930

Ethereum Tests Documentation, Release 0.2

may have a list of storageKeys.

• gasLimit: Gas limit for the transaction. This value is specified as a list to enable files with multiple tests

• gasPrice: Gas price in Wei, only in Berlin and earlier (replaced by maxFeePerGas in London)

• value: The value the transaction transmits in Wei. This value is specified as a list to enable files with multiple
tests

• to: The destination address, typically a contract. If you want to submit a create transaction, put an empty string
here (and the data segment is the constructor).

• secretKey: The secret key for the sending address. That address is derived from the secret key and therefore
does not need to be specified explicitely (see here).

• nonce: The nonce value for the transaction. The first transaction for an address has the nonce value of the
address itself, the second transaction has the nonce plus one, etc.

• maxPriorityFeePerGas: The maximum priority fee per gas (a.k.a. tip) the transaction is willing to pay to be
included in the block (London and later, added by eip 1559).

• maxFeePerGas: The maximum total fee per gas the transaction is willing to pay to be included in the block
(London and later, added by eip 1559).

17.1.5 Expect

This section contains the information we expect to see after the test is concluded.

104 Chapter 17. State Transition Tests

../state-transition-tutorial.html#multitest-files
../state-transition-tutorial.html#multitest-files
../state-transition-tutorial.html#multitest-files
https://www.freecodecamp.org/news/how-to-create-an-ethereum-wallet-address-from-a-private-key-ae72b0eee27b/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md

Ethereum Tests Documentation, Release 0.2

Format

JSON YAML

{
"name-of-test": {

<other sections>,
"expect": [

{
"indexes": {
"data": [0, "2-3", ":label

→˓foo"],
"gas": -1,
"value": -1

},
"network": ["Istanbul",

→˓<other forks, see below>],
"result": {

"address 1": {
"balance":

→˓"0xba1a9ce000",
"nonce": "0",
"storage: {

"0x0": 12345,
"10" : "0x121212"

},
"code": "0x00"

},
"address 2": {

<address fields go
→˓here>

}
},
{ <forks & results> }

]
}

}

name-of-test:
<other sections>
expect:
- indexes:

data:
- !!int 0
- 2-3
- :label foo
gas: !!int -1
value: !!int -1

network:
- Istanbul
- <another fork>
result:

address 1:
balance: 0xba1a9ce000,
nonce: 0,
storage:

0x0: 12345
10: 0x121212

code: 0x00
address 2:

<address fields go here>
- <forks & results>

The Network Specification

The string that identifies a fork (version) within a network: list is one of three option:

• The specific version: Istanbul

• The version or anything later: >=Frontier

• Anything up to (but not including) the version <Constantinople

The Indexes

The transaction can have multiple values for data, gasLimit, and value. The indexes: section specifies which of
these values are covered by a particular item in expect, for each field it can be either a single specification or a list of
specifications. Each of those specifications uses any of these options:

17.1. State Transition Tests Source Code 105

Ethereum Tests Documentation, Release 0.2

JSON YAML Meaning
-1 !!int -1 All the (data, gas, or value) values in the transaction. Note that this line can be omitted, -1

is the default value.
<n> !!int

<n>
The n’th value in the list (counting from zero)

“<a>-
”

a-b Everthing from the a’th value to the b’th value (counting from zero)

“:label
foo”

:label
foo

Any value in the list that is specified as :label foo <value>

Address Fields

It is not necessary to include all fields for every address. Only include those fields you wish to test.

• balance:

Wei balance at the start of the test

• code:

The code of the contract. In the expect: section this has to be raw virtual machine code.

• nonce:

The nonce counter for the address. This value is used to make sure each transaction is processed only once. The
first transaction the address sends has a nonce equal to this value, the second one is the nonce plus one, etc.

• storage:

Values in the storage of the address

JSON YAML

storage: {
"1": 5,
"0x20": 0x10

}

storage:
1: 5
0x20: 0x10

Expect Exception

This field specifies the exception we expect to see raised by for this transaction. It is optional - you only add it if an
exception is expected.

JSON YAML

"expectException": {
">=London": TR_TipGtFeeCap

}

expectException:
">=London": TR_TipGtFeeCap

The fields are fork specifications:

106 Chapter 17. State Transition Tests

https://en.wikipedia.org/wiki/Cryptographic_nonce

Ethereum Tests Documentation, Release 0.2

Type of specification Example
Specific fork Berlin
A specific fork and all forks after it >=London
Anything prior to a specific fork (not including that fork) <Berlin

The value is an exception name. You can see the list in the retesteth code.

17.2 Generated State Transition Tests

Location /GeneralStateTests

17.2.1 Test Structure

Contains transactions that are to be executed on a state pre given the environment env and must end up with post
results post

Although its a simple transaction execution on stateA to stateB, due to the generation of this tests into blockchain
format, the transaction execution is performed as if it was a single block with single transaction. This means that
mining reward and touch rules after EIP-161 are applied. (mining reward is 0)

• A test file must contain only one test testname

• Test file name must be identical for the test name testname

{
"testname" : {
"_info" : { ... },
"env" : { ... },
"post" : { ... },
"pre" : { ... },
"transaction" : { ... }

}
}

17.2.2 Info Section

"_info" : {
"comment" : "A test for (add 1 1) opcode result",
"filling-rpc-server" : "Geth-1.9.14-unstable-8cf83419-20200512",
"filling-tool-version" : "retesteth-0.0.3+commit.672a84dd.Linux.g++",
"lllcversion" : "Version: 0.5.14-develop.2019.11.27+commit.8f259595.Linux.g++

→˓",
"source" : "src/GeneralStateTestsFiller/stExample/add11Filler.json",
"sourceHash" :

→˓"e474fc13b1ea4c60efe2ba925dd48d6f9c1b12317dcd631f5eeeb3722a790a37",
"labels" : {

"0" : ":label normal",
"1" : ":label normal",
"2" : ":label normal"

},
},

17.2. Generated State Transition Tests 107

https://github.com/ethereum/retesteth/blob/develop/retesteth/configs/clientconfigs/t8ntool.cpp#L158-L166
https://github.com/ethereum/tests/tree/develop/GeneralStateTests

Ethereum Tests Documentation, Release 0.2

Info section is generated with the test and contains information about test and it’s generators.

Fields

comment comment from the test source. (can be edited at source)
filling-rpc-server tool that has been used to generate the test (version)
filling-tool-version the test generator (retesteth) version
lllcversion lllc version that was used to compile LLL code in test fillers
source path to the source filler in the test repository
sourceHash hash of the json of source file (used to track that tests are updated)
labels labels for the different transaction data options

17.2.3 Env Section

"env" : {
"currentCoinbase" : "0x2adc25665018aa1fe0e6bc666dac8fc2697ff9ba",
"currentDifficulty" : "0x020000",
"currentGasLimit" : "0xff112233445566",
"currentNumber" : "0x01",
"currentTimestamp" : "0x03e8",
"previousHash" :

→˓"0x5e20a0453cecd065ea59c37ac63e079ee08998b6045136a8ce6635c7912ec0b6"
},

Env section describe information required to construct a genesis block, or VM env for transaction execution.

• The fields are always 0x prefixed HEX.

Fields

currentCoinbase author/miner/coinbase address
currentDifficulty transaction executed in a block with this difficulty
currentGasLimit transaction executed in a block with this gas limit
currentNumber transaction executed in a block with this number
currentTimestamp transaction executed in a block with this timestamp
previousHash hash of the previous block (deprecated)

17.2.4 Post Section

"post" : {
"London" : [

{
"indexes" : {

"data" : 0,
"gas" : 0,
"value" : 0

},
"hash" :

→˓"0xe4c855f0d0e96d48d73778772ee570c45acb7c57f87092e08fed6b2205d390f4",
"logs" :

→˓"0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347",
"txbytes" :

→˓"0x02f88d0101808207d0871000000000000094cc80a4693c613900c001a05fecc3972a35c9e341b41b0c269d9a7325e13269fb01c2f64cbce1046b3441c8a07d4d0eda0e4ebd53c5d0b6fc35c600b317f8fa873b3963ab623ec9cec7d969bd
→˓" (continues on next page)

108 Chapter 17. State Transition Tests

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

"expectException" : "TR_IntrinsicGas"
}

]
},

Post section is a map <FORK> => [TransactionResults]

The test can have many fork results and each fork result can have many transaction results.

In generated test indexes are a single digit and could not be array. Thus define a single transaction from the test. See
transaction section which define transactions by data, gasLimit, value arrays.

Fields

London fork name as defined by client config (test standard names)
indexes define an index of the transaction in txs vector that has been used for this result
data index in transaction data vector
gas index in transaction gas vector
value index in transaction value vector
hash hash of the post state after transaction execution
logs log hash of the transaction logs
txbytes the transaction bytes of the generated transaction
expectException for a transaction that is supposed to fail, the exception

17.2.5 Pre/preState Section

"pre" : {
"0x095e7baea6a6c7c4c2dfeb977efac326af552d87" : {

"balance" : "0x0de0b6b3a7640000",
"code" : "0x600160010160005500",
"nonce" : "0x00",
"storage" : {

"0x00" : "0x01"
}

},
"0xa94f5374fce5edbc8e2a8697c15331677e6ebf0b" : {

"balance" : "0x0de0b6b3a7640000",
"code" : "0x",
"nonce" : "0x00",
"storage" : {
}

}
},

Pre section describes a full state of accounts used in test.

Its a map of <Account> => <AccountFields>

AccountFields are always complete (balance, code, nonce, storage must present) in this section and can not have a
missing field.

• All values are 0x prefixed hex.

• Empty code defined as 0x.

• Zero storage record defined as 0x00.

17.2. Generated State Transition Tests 109

Ethereum Tests Documentation, Release 0.2

Fields

address hash HASH20 is 20 bytes ethereum address 0x prefixed
balance VALUE account balance in evm state
code BYTES account code in evm state
nonce VALUE account nonce in evm state
storage map map of storage records VALUE => VALUE

TYPE Empty Length Format description
VALUE 0x00 Any* 0x prefixed hex up to 32 bytes long with no leading zeros.
BYTES 0x Any* 0x prefixed bytes of any length
HASH8 0x00. . . 00 Fixed 8 0x prefixed bytes of length 8
HASH20 0x00. . . 00 Fixed 20 0x prefixed bytes of length 20
HASH32 0x00. . . 00 Fixed 32 0x prefixed bytes of length 32
HASH256 0x00. . . 00 Fixed 256 0x prefixed bytes of length 256

• Size can be limited by the meaning of field in tests. (like gasLimit ceil, tx signature v - value)

17.2.6 Transaction Section

"transaction" : {
"data" : [

"0x"
],
"gasLimit" : [

"0x061a80"
],
"gasPrice" : "0x01",
"nonce" : "0x00",
"secretKey" : "0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8

→˓",
"to" : "0x095e7baea6a6c7c4c2dfeb977efac326af552d87",
"value" : [

"0x0186a0"
]

}

Transaction section defines a vector of transaction to be executed in GeneralStateTest From this section it is possible to
construct many transaction using values from data,gasLimit,value array. Indexes in this array used in the post section
to point out which transaction has been used to calculate the post state hash.

• All fields are 0x prefixed HEX of even length (can be like 0x0122)

• empty data is defined as 0x

• transaction creation to defined as “”

Fields

110 Chapter 17. State Transition Tests

Ethereum Tests Documentation, Release 0.2

data ar-
ray(BYTES)

Array of data/input of transaction. In Post section indexes::data index indicates in-
dex in this array.

gasLimit ar-
ray(VALUE)

Array of gasLimit of transaction. In Post section indexes::gas index indicates index
in this array

gasPrice VALUE Transaction’s gas price
nonce VALUE Transaction’s nonce
secretKey FH32 SecretKey criptic value used to sign tx data by v,r,s
to FH20 Transaction’s to destination address. set to “” if creation.
value VALUE Array of value of transaction. In Post section indexes::value index indicates index

in this array

Note that the state transition tests now also include the VM tests. They are located in GeneralStateTests/VMTests.

17.2. Generated State Transition Tests 111

Ethereum Tests Documentation, Release 0.2

112 Chapter 17. State Transition Tests

CHAPTER 18

Sample Values

These tests cannot be executed automatically by retesteth. Instead, they are known valid values that client program-
mers can plug into their own unit tests to check various aspects of their client.

18.1 ABI Tests

Location /ABITests/basic_abi_tests.json

A number of test cases for the application binary interface. These test cases only include the encoded arguments, not
the the first four bytes, which are a hash of the function name and parameter types.

The format of each test value is:

"<name of test>": {

The data types of the arguments, a list of strings.

"types": [
"uint256",
"bytes",
"uint32[]"

],

The values of the arguments. These can be integers, strings, or arrays:

"args": [
0xda7a0000da7a0000,
"a string",
[16, 256]

],

The encoded arguments, a hexadecimal string:

113

https://github.com/ethereum/tests/blob/develop/ABITests/basic_abi_tests.json
https://solidity.readthedocs.io/en/v0.7.1/abi-spec.html

Ethereum Tests Documentation, Release 0.2

"result":
→˓"00da7a0000da7a006000a0086120737472696e67000200100100
→˓"
}

18.2 Difficulty Test

Location /BasicTests

18.2.1 Test Implementation

These tests are designed to just check the difficulty formula of a block.

difficulty = DIFFICULTY(currentBlockNumber, currentTimestamp, parentTimestamp,
→˓parentDifficulty)

described at EIP2 point 4 with homestead changes.

So basically this .json tests are just to check how this function is calculated on different function parameters (parent-
Difficulty, currentNumber) in its extremum points.

There are several test files:

difficulty.json Normal Frontier/Homestead chain difficulty tests defined manually
difficultyFrontier.json Same as above, but auto-generated tests
difficultyMorden.json Tests for testnetwork difficulty. (it has different homestead transition

block)
difficultyOlimpic.json Olympic network. (no homestead)
difficultyHomestead.json Tests for homestead difficulty (regardless of the block number)
difficultyCustomHomestead.
json

Tests for homestead difficulty (regardless of the block number)

18.2.2 Test Structure

{
"difficultyTest" : {

"parentTimestamp" : "42",
"parentDifficulty" : "1000000",
"currentTimestamp" : "43",
"currentBlockNumber" : "42",
"currentDifficulty" : "1000488"

}
}

Fileds

114 Chapter 18. Sample Values

https://github.com/ethereum/tests/tree/develop/BasicTests
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2.md

Ethereum Tests Documentation, Release 0.2

parentTimestamp indicates the timestamp of a previous block
parentDifficulty indicates the difficulty of a previous block
currentTimestamp indicates the timestamp of a current block
currentBlockNumber indicates the number of a current block (previous block number = currentBlockNum-

ber - 1)
currentDifficulty indicates the difficulty of a current block

18.3 RLP Test

Location /RLPTests

Describes an RLP (https://github.com/ethereum/wiki/wiki/RLP) encoding using the .json file.

18.3.1 Test Implementation

The client should read the rlp byte stream, decode and check whether the contents match its json representation. Then
it should try do it reverse - encode json rlp representation into rlp byte stream and check whether it matches the given
rlp byte stream.

If it is an invalid RLP byte stream in the test, then ‘in’ field would contain string INVALID.

Some RLP byte streams are expected to be generated by fuzz test suite. For those examples ‘in’ field would contain
string VALID as it means that rlp should be easily decoded.

Note: RLP tests are testing a single RLP object encoding and not a stream of RLP objects in one array.

18.3.2 Test Structure

{
"rlpTest": {

"in": "dog",
"out": "0x83646f67"

},

"multilist": {
"in": ["zw", [4], 1],
"out": "0xc6827a77c10401"

},

"validRLP": {
"in": "VALID",
"out": "0xc7c0c1c0c3c0c1c0"

},

"invalidRLP": {
"in": "INVALID",
"out": "0xbf0f000000000000021111"

},
...

}

18.3. RLP Test 115

https://github.com/ethereum/tests/tree/develop/RLPTests
https://github.com/ethereum/wiki/wiki/RLP

Ethereum Tests Documentation, Release 0.2

Fields

in json object (array, int, string) representation of the rlp byte stream (*except values VALID and INVALID)
out string of rlp bytes stream

When a json string starts with 0x, the rest of the string is interpreted as hex bytes, and when one starts with #, the
rest is interpreted as a decimal number. For example 5050 and "#5050" both represent the decimal number 5050.
Strings with # prefixes should be used for numbers that would be too big to represented as int values, and would
require a “bigint” representation.

The out strings normally start with 0x to be interpreted as hex bytes.

18.4 Transaction Test

Warning: There is a filler directory for these tests /src/TransactionTestsFiller, but it has not been maintained and
is no longer supported. If you need to create a transaction test, you need to create a filled version.

Location /TransactionTests

Describes a complete transaction and its RLP representation using the .json file.

18.4.1 Test Implementation

The client should read the rlp and check whether the transaction is valid, has the correct sender and corresponds to the
transaction parameters. If it is an invalid transaction, the transaction and the sender object will be missing in the fork
section.

18.4.2 Test Structure

{
"transactionTest1": {

"_info" : { ... },
"rlp" : "bytearray",
"Istanbul" : {

"sender" : "2ea991808ba979ba103147edfd72304ebd95c028",
"hash" :

→˓"4782cb5edcaeda1f0aef204b161214f124cefade9e146245183abbb9ca01bca5"
}

},

"invalidTransactionTest": {
"_info" : { ... },

"rlp" : "bytearray",
"Istanbul" : {
}

},
...

}

116 Chapter 18. Sample Values

https://github.com/ethereum/tests/tree/develop/src/TransactionTestsFiller
https://github.com/ethereum/tests/tree/develop/TransactionTests
https://github.com/ethereum/tests/tree/develop/TransactionTests
https://github.com/ethereum/wiki/wiki/RLP

Ethereum Tests Documentation, Release 0.2

Fields

_info Info section about test origin generated by test generator
rlp BYTES RLP encoded data of this transaction
hash FH32 Hash of the transaction derived from rlp field
sender FH20 The address of the sender, derived from the v,r,s values.

TYPE Empty Length Format description
VALUE 0x00 Any* 0x prefixed hex up to 32 bytes long with no leading zeros.
BYTES 0x Any* 0x prefixed bytes of any length
HASH8 0x00. . . 00 Fixed 8 0x prefixed bytes of length 8
HASH20 0x00. . . 00 Fixed 20 0x prefixed bytes of length 20
HASH32 0x00. . . 00 Fixed 32 0x prefixed bytes of length 32
HASH256 0x00. . . 00 Fixed 256 0x prefixed bytes of length 256

• Size can be limited by the meaning of field in tests. (like gasLimit ceil, tx signature v - value)

Next are descriptions of transaction fields that are encoded in rlp:

18.4.3 Transaction Section

{
"transaction" : {

"data" : "0x",
"gasLimit" : "0x061a80",
"gasPrice" : "0x01",
"nonce" : "0x00",
"secretKey" :

→˓"0x45a915e4d060149eb4365960e6a7a45f334393093061116b197e3240065ff2d8",
"to" : "0x095e7baea6a6c7c4c2dfeb977efac326af552d87",
"value" : "0x0186a0"

}
},
{

"transaction" : {
"data" : "0x",
"gasLimit" : "0x061a80",
"gasPrice" : "0x01",
"nonce" : "0x00",
"v" : "0x1c",
"r" : "0x3d55a2ac293c7ad82632b18705e67ad2a0e6177d44f601dca043934c8cd8c07a",
"s" : "0x1c069ed47162b350a1f496e9a55f53685189e9c3076a4931334a43719b9a158e",
"to" : "",
"value" : "0x0186a0"

}
}

Transaction section defines single transaction to be executed in BlockchainTest’s block.

• All fields are 0x prefixed HEX of even length (can be like 0x0122)

• empty data is defined as 0x

• transaction creation to defined as “”

18.4. Transaction Test 117

Ethereum Tests Documentation, Release 0.2

Note: Fields r, s are u256 and can be less than 32 bytes!

Note: There is an EIP limiting s max value (source?). From a certain fork transactions with s value > sMaxValue are
considered to be invalid.

Fields

data BYTES data/input code of the transaction
gasLimit VALUE gasLimit of transaction.
gasPrice VALUE Transaction’s gas price
nonce VALUE Transaction’s nonce
secretKey HASH32 SecretKey criptic value used to sign tx data by v,r,s
v VALUE Cryptic value 1 byte in length
r VALUE Values corresponding to the signature of the transaction and used to determine the sender

of the transaction.
s VALUE Values corresponding to the signature of the transaction and used to determine the sender

of the transaction.
to FH20 Transaction’s to destination address. set to "" if creation.
value VALUE Value of the transaction.

TYPE Empty Length Format description
VALUE 0x00 Any* 0x prefixed hex up to 32 bytes long with no leading zeros.
BYTES 0x Any* 0x prefixed bytes of any length
HASH8 0x00. . . 00 Fixed 8 0x prefixed bytes of length 8
HASH20 0x00. . . 00 Fixed 20 0x prefixed bytes of length 20
HASH32 0x00. . . 00 Fixed 32 0x prefixed bytes of length 32
HASH256 0x00. . . 00 Fixed 256 0x prefixed bytes of length 256

• Size can be limited by the meaning of field in tests. (like gasLimit ceil, tx signature v - value)

18.5 Trie Tests

Location /TrieTests/

These are sample trie structures.

This is the format of most of those tests:

{
"name of test": {
"in": [

["do", "verb"],
["ether", "wookiedoo"],
["horse", "stallion"],
["shaman", "horse"],
["doge", "coin"],
["ether", null],
["dog", "puppy"],
["shaman", null]

(continues on next page)

118 Chapter 18. Sample Values

https://github.com/ethereum/tests/tree/develop/TrieTests
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d

Ethereum Tests Documentation, Release 0.2

(continued from previous page)

],
"root": "0x29b235a58c3c25ab83010c327d5932bcf05324b7d6b1185e650798034783ca9d"

}
}

The fields are:

• in, The data to store in the trie, which can be either a map object or a list in which each item contains a list of a
key and the corresponding value.

• root, the hash expected at the root of the trie after adding all of those items

• hexEncoded (optional), if this field exists and is true, it means the strings for the keys and values are already
encoded hexadecimal, rather than ASCII strings.

18.5.1 Next and Previous Test

The test /TrieTests/trietestnextprev.json is formatted differently. Instead of testing the entire trie data structure, this file
is used to test individual operations within this structure.

18.6 Miscellaneous Tests

These are various test values that do not belong under any of the major categories.

18.6.1 Cryptographic Tests

• /BasicTests/crypto.json

/BasicTests/crypto.json <https://github.com/ethereum/tests/blob/develop/KeyStoreTests/basic_tests.json>‘_

18.6.2 Encoding Tests

Tests for the encoding of various data types.

• /BasicTests/hexencodetest.json

• /BasicTests/keyaddrtest.json

• /BasicTests/txtest.json

18.6.3 Genesis Block Tests

Tests related to the genesis block at the beginning of a block chain:

• /BasicTests/blockgenesistest.json

• /BasicTests/genesishashestest.json

• /GenesisTests/basic_genesis_tests.json

18.6. Miscellaneous Tests 119

https://en.wikipedia.org/wiki/Associative_array
https://github.com/ethereum/tests/blob/develop/TrieTests/trietestnextprev.json
https://github.com/ethereum/tests/blob/develop/BasicTests/crypto.json
https://github.com/ethereum/tests/blob/develop/KeyStoreTests/basic_tests.json
https://github.com/ethereum/tests/blob/develop/BasicTests/hexencodetest.json
https://github.com/ethereum/tests/blob/develop/BasicTests/keyaddrtest.json
https://github.com/ethereum/tests/blob/develop/BasicTests/txtest.json
https://github.com/ethereum/tests/blob/develop/BasicTests/blockgenesistest.json
https://github.com/ethereum/tests/blob/develop/BasicTests/genesishashestest.json
https://github.com/ethereum/tests/blob/develop/GenesisTests/basic_genesis_tests.json

Ethereum Tests Documentation, Release 0.2

120 Chapter 18. Sample Values

CHAPTER 19

Contribute to Docs

This documentation has been build using the Python Sphinx documentation tool.

Since the Ethereum tests repository is very large to clone locally, a convenient way to contribute to the documentation
is to make a fork of the test repo, add the changes online with the GitHub reStructuredText editor and then open a PR.

If you want to clone to your desk you might want to make use of git clone --depth 1 for faster download.

You can build the documentation by running make html from the docs directory in the tests repository.

121

http://www.sphinx-doc.org/
https://github.com/ethereum/tests
http://www.sphinx-doc.org/en/stable/rest.html

Ethereum Tests Documentation, Release 0.2

122 Chapter 19. Contribute to Docs

CHAPTER 20

Indices and tables

• genindex

• modindex

• search

123

	Retesteth
	Retesteth through the Web
	Request Helper
	Request Single File
	Custom Command

	Retesteth in a Docker Container
	How Does This Work?

	Test Against Your Client
	Replace geth Inside the Docker
	Client Outside the Docker, Keep Configuration Files Intact
	Client Inside the Docker, Modify Configuration Files
	Client Outside the Docker, Modify Configuration Files

	Running Multiple Threads
	Using the Latest Version
	Conclusion

	State Transition Tests
	The Environment
	Compiling Your First Test
	The Source Code
	Failing a Test
	Tests that are Supposed to Fail

	Yul Tests
	Solidity Tests
	ABI values

	Multitest Files
	Multiple Tests, Same Result

	Conclusion

	Blockchain Tests
	The Environment
	Types of Blockchain Tests
	Valid Block Tests
	Test Source Code
	Tests using the blockchain random value

	Invalid Block Tests
	Getting Exception Names

	Transition Tests
	Conclusion

	Ethereum Object Format Tests
	Fillers
	Overall Structure
	The Data Section
	The Expect Section

	Testing EIPs
	Environment
	Test Cases
	Testing new Opcodes
	Conclusion

	Blocktests with Ommer / Uncle Blocks
	Uncle Blocks
	Writing Tests
	Writing the Filler File
	Correcting the State Root

	Conclusion

	Test Internals
	Compiled Tests
	Virtual Machine Trace
	Normal Virtual Machine Trace
	Raw Virtual Machine Trace

	Conclusion

	How to Contribute Tests
	Generalizing Tests
	Files
	State Tests
	Blockchain Tests

	Conclusion

	Adding Transition Tool Support to your Execution Layer Client
	Why Do This?
	Configuration
	Command line parameters
	Transaction tests
	State transition tests
	Blockchain tests

	Minimal t8ntool client

	Custom compiler support
	Why Do This?
	Install Huff as part of the Docker
	Update the client configuration
	Create a test file that uses Huff

	Using Retesteth
	Command Line Options
	Set The Suite
	Retesteth Options
	Setting the Test Suite and Test
	Debugging
	Additional Tests
	Test Generation

	Examples

	The Retesteth Config Directory
	Transition Tool
	Command Line Parameters
	Test Parameters
	Input Files
	Output Files

	File Structures
	Transaction File
	Environment File
	Allocation Files
	Result File
	Trace Files

	Using Standard Input and Output
	Input
	Output

	The RPC Interface
	Retesteth-Specific RPCs
	debug_accountRange
	debug_storageRangeAt
	debug_traceTransaction
	test_mineBlocks
	test_modifyTimestamp
	test_rewindToBlock
	test_setChainParams

	Standard RPCs Retesteth Uses

	Blockchain Tests
	Blockchain Tests Source Code
	Subfolders
	Test Structure
	Genesis Block
	Pre
	Blocks
	Transaction
	Expect

	Generated Blockchain Tests
	Test Structure
	Info Section
	Pre/preState Section
	GenesisBlockHeader Section
	Valid Block Section
	Invalid Block Section
	Transaction Section

	Ethereum Object Format Tests
	Ethereum Test Format Source Code
	Test Structure
	Transaction
	Expect

	Generated Ethereum Object Format
	Test Structure

	State Transition Tests
	State Transition Tests Source Code
	Test Structure
	Env
	Pre
	Transaction
	Expect

	Generated State Transition Tests
	Test Structure
	Info Section
	Env Section
	Post Section
	Pre/preState Section
	Transaction Section

	Sample Values
	ABI Tests
	Difficulty Test
	Test Implementation
	Test Structure

	RLP Test
	Test Implementation
	Test Structure

	Transaction Test
	Test Implementation
	Test Structure
	Transaction Section

	Trie Tests
	Next and Previous Test

	Miscellaneous Tests
	Cryptographic Tests
	Encoding Tests
	Genesis Block Tests

	Contribute to Docs
	Indices and tables

